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SHORTSIGHTED WATCHMAN ARRANGEMENT
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Abstract: The problem of arranging watchmen in a polygon with holes is considered in this paper. For
watchmen with unlimited visibility, an O(N log N) approximate algorithm is presented that guarantees
the number of arranged watchmen to be equal to or less than the number of reflex vertices of the
environment. When watchmen are shortsighted, three approximation algorithms based on an NP-hard
proof of the optimal arrangement problem and/or the above approximate algorithm for watchmen with
unlimited visibility are described.

1. Introduction

Watchmen are arranged to observe and check whether or not everything is normal in known envi-
ronments. If the watchman’s view range in distance reaches the limits of the environment, the viewed
area of a watchman forms a star polygon or a fan polygon. Arranging the minimum number of watchmen
in a known environment is thus equivalent to finding the minimum number of star polygons which cover
a simple polygonal region with holes. In general, this covering problem is NP-hard when Steiner points
are permitted or NP-complete without Steiner points[1]. Partition of a polygon may be considered as
a specific case of covering. The problem of partitioning a simple polygon with holes into a minimum
number of star polygons remains NP-hard when Steiner points are permitted or NP-complete without
Steiner points[2]. Aggarwal et al.[3] developed an O(N®logN) approximation algorithm which obtains
at most O(logN * C,p;) vertex guards for a polygon that may have holes, where N is the vertex number
and Cop; denotes the minimum number of vertex guards. O’Rourke[4] indicated that (1) for a polygon
of n vertices with h holes, |(N + 2k)/3| guards suffice to dominate any triangulation; (2) r guards are
occasionally necessary and always sufficient to see the interior of a simple polygon of N vertices with
r > 1 reflex vertices.

In Section II of this paper, an O(N log N) approximate approach for arranging watchmen with
unlimited visibility is described. Based on the generalised Delaunay triangulation of a polygon with
holes[5, 6], the approach is characterised by merging the triangles into convex polygons around reflex
vertices, then heuristically selecting a subset of vertices as the positions for watchmen and further merging
the convex polygons into star polygons. The number of the arranged watchmen is guaranteed to be equal
to or less than r, the number of reflex vertices. When watchmen are shortsighted, i.e., their view range in
distance is less than the limits of an environment, the task of arranging them becomes more difficult. The
optimal arrangement problem is NP-hard; a proof is given in Section III. Approximation algorithms based
on this proof and/or the approach for arranging watchmen with unlimited visibility are also described in
Section III.

II. Arranging watchmen with unlimited visibility

Since Delaunay triangulations have a nice property, i.e., they tend to avoid giving long, thin tri-
angles, a generalised Delaunay triangulation is considered to be a good start of a partition of the free
space. After merging the generalised Delaunay triangles into convex polygons, the approach described
below tries to sequentially select the positions for watchmen from those vertices whose corresponding
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star polygons formed by sets of merged convex polygons will cover the local uncovered areas as much as
possible. This approach consists of the following steps:

1. Construct a generalised Delaunay triangulation of a graph in O(N log N) time, such as the example
shown in Figures 1.a.

2. Check each reflex vertex and mark Delaunay edges in O(N) time.

o

(a)
(b)

If there are Delaunay edges within or on the inner cone of a reflex vertex (e.g., reflex vertex A
in Figure 1.a), then choose and mark the shortest one (e.g., Delaunay edge AB in Figure l.a).

If there is no Delaunay edge within or on the inner cone of a reflex vertex (e.g., reflex vertex
C in Figure 1.a), then choose the two Delaunay edges which are nearest to the inner cone
from the left and right sides respectively and mark them (e.g., Delaunay edges CD and CE in
Figure 1.a).

- Remove the unmarked Delaunay edges in O(N) time. The free space is now partitioned into convex
components, as shown in Figure 1.b.

. Check those reflex vertices which still have more than two Delaunay edges emanating from them.
For this kind of reflex vertex, if removing any one of its two Delaunay edges chosen from Step 2(b)
unites the two adjacent components into one convex component, then remove it. This results in
the free space being partitioned into fewer convex components in O(N) time.

. Label each of the convex components so formed with a pair of numbers: the number of reflex
vertices located on the convex component and the number of the Delaunay edges located on the
convex component in O(N) time (See Figure 1.b).

. Label each vertex with a pair of numbers, which are the sums of the label numbers of the convex
components around the vertex, in O(N) time (See Figure 1.b).

. Using the following greedy method, repeatedly select candidate positions for watchmen from vertices
on the basis of their vertex label values in O(N log N) time:

(2

(b)

(<)

Construct a heap to store vertices, first according to their first label values and then according
to their second values, when the first values are same. If both values are same, a reflex vertex
is first. The vertex with the biggest label value is set at the root. The information on pointers
pointing to the adjacent convex components of a vertex is stored along with the vertex. This
requires O(N) time.

Check the vertex of the root in the heap; if none of its adjacent convex components have been
marked, then select it as a candidate position, mark those convex components with the vertex
identifier and delete this vertex from the heap. Otherwise, change the label value of the vertex

into the difference between its original value and the values of those marked adjacent convex
components.

i. If the new value is (0, 0), then delete this vertex from the heap.

ii. If the new value is equal to its previous value, then select this vertex as a candidate
position, mark those unmarked adjacent convex components with the vertex identifier
and delete this vertex from the heap.

iii. Otherwise rearrange the heap according to the new value. The original value of the vertex
is stored along with the new value of the vertex.

Repeat Substep 7(b) until no vertices are in the heap. The selected candidate positions for
watchmen along with the convex components marked by their identifiers form a star polygon
partition as shown in Figure 1.c.

8. For those last selected vertices which marked only one convex component, it is required to check the
positions for watchmen whose corresponding star polygons are adjacent to the marked-out convex
component, i.e., their star polygons share a remaining Delaunay edge with the marked-out convex

193



194

component. If the convex component can be partitioned or covered by the extended star polygons
viewed from these adjacent positions for watchmen, then the candidate position associated with the
convex component should be deleted.

This kind of vertex has a low number of Delaunay edges located on its marked convex component.
If the number of Delaunay edges located on the marked convex component is limited to a constant
value — a heuristic parameter, then the check for those vertices can be done in O(N) time.

9. A farther check is required to be done on those candidate positions for watchmen located at convex
vertices.

A reflex vertex is dominated by a convex vertex, iff (1) the reflex vertex is located on the star
polygon viewed from the convex vertex (a candidate position selected in Step 7); (2) after Step 4,
the reflex vertex has a remaining Delaunay edge which connects the reflex vertex with the convex
vertex; and (3) the two convex components at the two sides of the above Delaunay edge are marked
by the identifier for the convex vertex in Step 7. After a convex vertex has been selected as a
candidate position, if all its dominated reflex vertices are then selected as candidate positions for
watchmen in Step 7, then the star polygons formed by merging the convex components round these
reflex vertices can cover the star polygon marked by the identifier for the convex vertex. In this
case, we eliminate the candidate position at the convex vertex; otherwise we still keep it. Since the
number of Delaunay edges remaining after Step 4 is equal to or less than 2r, this check can be done
in O(N) time.

The final remaining candidate positions for watchmen are the selected positions for watchmen. The result
for the example graph is shown in Figure 1.c. According to Euler’s theorem, the number of the selected
positions for watchmen is equal to R-h+1, where h is the number of holes and R is the number of the last
remaining Delaunay edges, as shown in Figure 1.c. The upper bound of the number of watchmen can be
proved as r, the number of reflex vertices. In accordance with O’Rourke’s conclusion[4], the upper bound
of the approach is tight for general situations.

III. Arranging shortsighted watchmen

When a watchman’s view range in distance is less than the limits of its environment, a viewed area
of the watchman forms a star disk or a fan disk. A Star Disk is defined as a plane graph which is an
intersection region of a disk and a star polygon where the center of the disk is located in the kernel of
the star polygon. The center of the disk is the center of the formed star disk. If the intersecting disk has
diameter D, then the formed star disk also has diameter D. If D is large enough for the disk to include
the star polygon, the formed star disk degenerates into the star polygon. A fan disk is a star disk whose
center coincides with one of its vertices. We designate the problem of finding the minimum number of
star disks with diameter D which cover a simple polygonal region with holes by the name of the Minimum
Star Disk Cover problem. In general, it is NP-hard. A proof is given below:

1. Construct a generalised Delaunay triangulation of a simple polygon with holes.

2. For each triangle which cannot be covered by a disk with diameter D, partition the triangle into
two by bisecting its biggest angle. Repeat this process for each triangle, until every triangle can be
covered by a disk with diameter D.

3. Let S be the set of triangles formed at Step 2. If several triangles can be covered by the same
star disk with diameter D whose center is located at a node, which is the circumcenter of an acute
triangle or the mid-point of the longest edge of a right or obtuse triangle, then they form a subset
of S. Assume that C is the collection of all the subsets, then the original optimisation problem can
be restricted to the Minimum Cover problem: For collection C of subsets of a finite set S, positive
integer K <| C |, does C contain a cover for S of sise K or less? This problem is known as an
NP-complete problem even if all ¢ € C have | ¢ |< 3. It is solvable in polynomial time by matching
techniques only if all ¢ € C have | c |[< 2.



Since Steps 1 to 3 require only polynominal time and a star disk may cover more than 2 triangles, we
can conclude that the original optimization problem is NP-hard.

Three approximation algorithms of arranging the positions for watchmen are listed below. Their
application depends on the relative sise between the watchman’s view range in distance D and the
dimensions of the environment. Clearly, their solutions depend on the shape of the simple polygon with
holes and the diameter D of the covering star disks.

When D can be compared with the minimum length of the generalised Delaunay edges of a polygon .

with holes, a modified version of the above NP-hardness proof can be used as an approximation algorithm.
It consists of:

1. Construct a generalised Delaunay triangulation of a simple polygon with holes in O(N log N) time[5,
6.

2. In the triangulation, assume that AABC has its edges "a”, "b” and "c”, "a” is its longest edge and
”b” is its shortest edge. If D < a » sec(B/2), then partition the triangle into two by bisecting £ A.
Repeat this process for each triangle, until D > a * sec(B/2), i.c., every triangle can be covered
by a disk with diameter D whose center O is located at the intersection point of the bisector of
LB and the line which is perpendicular to ”a” and passes through the mid-point of "a”. The finer
triangulation for the example graph is shown in Figure 2.a.

Let D, be the diameter of the smallest disk covering AABC and D, be the diameter of the smallest
disk covering AABC, whose center is located at O. In all cases, D, less than 1.083 * D,.

3. Construct a dual graph for the finer triangulation (see Figure 2.b). This dual graph consists of
nodes and arcs which connect every two nodes whose corresponding triangles share a common edge.
A node in AABC is located at the intersection points of the bisector of the smallest angle B and
the line which is perpendicular to the longest edge "a” and passes through the mid-point of ”a”. A
node may have 1 to 3 connecting arcs, therefore it has a degree between 1 and 3.

4. The following greedy method is used to find a star disk partition for the free area:

(a) Select a node with degree 3 in the dual graph as a watchman’s position in O(N) time.

(b) From this node, along the unexplored arcs, test the vertices of the unexplored adjacent triangles
and find the adjacent triangles which can be covered by the star disk with diameter D whose
center is located at the node. Merge the covered triangles into a star polygon associated with
the node. Repeat this process, until there are no more adjacent triangles which can be merged
in. Assuming the number of merged triangles for position i is M;, this step requires O(M; log
M.') time.

(c) Along an unexplored arc of the dual graph, consider the next unexplored node:

i. If the next unexplored node has degree 3, then select the node as a watchman’s position

(e.g, position 4 in Figure 2.b) and go to Step 4.b.

ii. If the next unexplored node has degree 2, check a star disk with diameter D whose center
is located at the unexplored node after the next node, to determine whether it can cover
- the next triangle. ' ’

A. I it can cover, select it as a watchman’s position (e.g, position 3 in Figure 2.b) and
go to Step 4.b.

B. If it cannot cover, then check a star disk with diameter D whose center is located at
the mid-point between the next unexplored node and the node after the next, and
determine whether it can cover both the next triangle and the triangle after the next.
(1) I it can cover, select it as a watchman’s position (e.g, position 6 in Figure 2.b)
and go to Step 4.b.

(2) X it cannot cover, select the node of the next triangle as a watchman’s position
(e.g, position 5 in Figure 2.b) and go to Step 4.c.
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iii. If the next unexplored node has degree 1, select it as a position.
This step requires constant time.

(d) Repeat the above step (c) until all triangles are covered.

The whole process requires O(N log N) time, since )~ M; is O(N). This algorithm in fact partitions the
free region into star polygons, each of which is a degenerated star disk with diameter D. Figure 2.b shows
the result of the example graph by this approach.

When D is quite large, the result of the approach for watchmen with unlimited visibility shows that
only few decomposed star polygons cannot be covered by the star disks with diameter D whose centers
locate on the selected positions for watchmen. In this case we may modify the result of the approach as
follows:

For each star polygon which cannot be covered by one star disk with diameter D, consider its generalized
Delaunay triangulation and further use the first approximation algorithm described in this section to find
the positions for watchmen.

When D is quite small compared with the dimensions of the environment, we partition the simple
polygon (with or without holes) by a grid, in which each cell can be covered by a disk with diameter D.
The free area in a cell can be classified as:

1. a star polygon with the cell center in its kernel,

2. a simple polygon,

3. a simple polygon with holes,

4. several disconnected components, each of which may be a simple polygon with holes.

For the first type of cells, a watchman’s position can be placed on the center of a cell. For the second
and third types of cells or a component of the forth type of cells, the approach given in Section II can
now be applied.

IV. Conclusion

We have presented an O(N log N) approximate approach for arranging watchmen with unlimited
visibility that guarantees the number of arranged watchmen to be equal to or less than r, the number
of reflex vertices of the environment figure. When watchmen are shortsighted, we have proved that the
optimal watchman arrangement problem is NP-hard. Three approximation algorithms based on this proof
and/or the approach for arranging watchmen with unlimited visibility are described. Their application
depends on the relative sise between the watchman’s view range in distance D and the dimensions of the
environment.
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(a) The marked Delaunay edges
shown by thin solid lines.

(5,7)
(b) The labelled convex components (b) The dual graph and the selected
and reflex vertices. positions by a greedy method.

(c) The selected positions and (c) The view range of a shortsighted
the decomposed polygons. watchman.
Figure 1: The arrangement for Figure 2: The arrangement for short-
watchmen with unlimited visibility sighted watchmen.

for an example graph.



