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abstract. We consider the problem of moving a closed chain of » links confined to the plane from one
given configuration to another. The links have fixed lengths and may rotate about their endpoints, possibly
crossing over one another. We define the notion of "line tracking motion™. Such a motion can be easily
calculated and described by computer so that the locations of all joints during the motion are implicitly
specified. We show by giving an algorithm that when reconfiguration is possible by any means, then a
sequence of O (n) of our simple line tracking motions can be used to carry out the reconfiguration. These
motions can be computed in O (n) time on real RAM.

1. Introduction

While there are general techniques [SS] for solving motion planning problems having a bounded
number of degrees of freedom in polynomial time, problems having an unbounded number of degrees of
freedom are often at least NP-complete. Hence it is of interest to find examples of motion planning prob-
lems that can be solved quickly despite having an unbounded number of degrees of freedom. The problem
of reconfiguring chains of links under various conditions has been considered in this regard in [HJW],
[KK], [K] and [LW], and surveyed in [W]. In particular, these papers describe polynomial time algorithms
for motion planning problems that have an unbounded number of degrees of freedom.

A simple criterion for the reconfigurability of a closed chain of » links confined to the plane, with
links allowed to cross, is given in [LW]. In particular, this criterion, described in more detail later, says
that a closed chain can be moved between any given pair of configurations if the lengths of its second and
third longest links sum to at most half the sum of all the link lengths. In this paper, we give an algorithm
that reconfigures closed chains of links provided that the reconfiguration is possible by any arbitrary means.
Our algorithm requires O (n) simple "line tracking” motions for an n-link chain, and the descriptions of
these motions can be calculated in O (n) time. Here, a key element is our definition of a "line tracking”
motion, which makes possible a fast reconfiguration algorithm.

A chain is a sequence of n links, L,, - -, L,, connected by joints. L; has joints v;_, and v; and
length J;. Each link can rotate freely about its joints. A configuration of achainL,, ---, L, is a polygonal
curve (possibly self-intersecting) that-consists of # consecutive links of lengths [,, - - - ,-I,, respectively. A
closed chain is a chain such that vq and v, are the same joint. Hence a configuration of a closed chain is

" just a closed polygonal curve. We use the term linkage, often denoted L, to refer to a closed chain or a

piece of a closed chain.
Definition. Two configurations of a closed chain L are equivalent if one configuration can be continuously
moved to the other (links may cross, but L must remain in the plane). A configuration of L is invertible if it
is equivalent to its mirror image (with respect to some arbitrary line).

In [LW], it is shown that with respect to the above notion of equivalence, a closed chain of links in
the plane has at most two equivalence classes of configurations. If the chain satisfies the property that the



lengths of the second and third longest links sum to at most half the sum of all the link lengths, then the
chain has just one equivalence class of configurations: it is possible to move between any given pair of
configurations. If this property does not hold (see Figure 1), then the chain has exactly two equivalence
classes of configurations, and the configurations in the one class are the mirror images of the configurations
in the other class. In this case, it is possible to move between two given configurations if and only if they
lie in the same one of the two possible equivalence classes.

Figure 1. A 6-link chain that is not invertible.

In Section 2, we discuss the concept of "simple motions", and a define the notion of a "line tracking" -

motion that makes possible an algorithm that reconfigures chains of links when such reconfiguration is pos-
sible by any means. The reconfiguration algorithm is presented in Section 3. It takes O (n) time to com-
pute and produces O (n) simple line tracking motions.

2. Simple Motions and Line Tracking Motions

It is essential for a motion planning algorithm to be able to describe motions unambiguously. To
achicvethis,it’musefulwdeﬁneoneormo:ekindsofbasicorsimplemotionswps.soﬂmcompﬁcawd
motions can be described as a sequence of the simple ones. Of course, the simple motions chosen should
not be limiting: it should be possible to carry out any reconfiguration in terms of the simple motions avail-
able to the algorithm. Bascd on [HW], here is a list of criteria for a good "simple motions™:

1) The description of the motion should uniquely determine the geometric movement of all parts of the
linkage.

2) The motion should be one that can be computed and described by an algorithm.

3) If the angle at a joint changes, it should change monotonically. In other words, a motion in which a
given angle increases and then decreases should be regarded as a combination of simpler motions. This is
desirable so that the algorithmic notion of simple motion has some bearing on a mechanical notion of sim-
plicity that would take into account wear and tear on joints, say.

Itshwldbenowdthatanymoﬁonodlerﬂmnm&ﬁonormtaﬁonofmeenﬁmlinhge(oraeombi-
nation of the two) must involve changing some joint angles. It is impossible to change the relative posi-
tions of any joints in a closed chain without altering at least four of the joint angles simultaneously.

The criteria given above allow for many kinds of motions. We next define a motion (called simple
. -elbowbending)ﬂmmﬁsﬁwﬂwaboveaiteriaandﬂmisanwsentialingredimtofourdeﬁnitionofline
tracking motion. The elbow bending motion applies to an open chain of links.

Definition: An elbow consists of an open chain of Links v,...,V;,...,v,, where the location in the plane of v,
iskeptﬁxed,andmelinksbetweenvomdv,,msu'etchedoutinasuaightchain,andmelinksﬁmn 179}
v, are also stretched out in a straight chain. The elbow joint v; may flex, and the entire elbow linkage may
rotate about the fixed joint v,. The elbow bending motion consists of moving the elbow so that v, moves in
a straight line directly from its initial location to a specified final location.
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Observation 1: It is easy to show that an elbow can be moved so that v, tracks a straight line from its ini-
tial location to any given point within its reach.

Observation 2: There are two configurations of an elbow that place v, at a given point in the interior of its
reachability region. However, note that an elbow motion can be specified completely by giving 1) a reach-
able closed straight line segment for v, 0 track and 2) the initial configuration of the arm - provided the
line segment lies in the interior of the reachability region and does not pass through the location of vo; if
v, reaches either v, or the boundary of its region, then additional information can be given to specify on
which side of the line through vo and v, the elbow joint v, should move. Hence elbow motions easily
satisfy criteria 1) and 2) above.

Observation 3: In the process of moving v, along a straight line segment within its reachability region, the
elbow joint at v, may sometimes be required to close (though not necessarily fold completely), then open
(though not necessarily straighten completely). Also, the first link L, may be required to rotate first in one
sense, then in the opposite sense (so the angle formed at v between L, and, say, a horizontal reference line
both opens and closes).

Definition: A simple elbow motion is an elbow motion in which the joint vo and the elbow joint v, each
either open or close monotonically.

Clearly every elbow motion can be decomposed into at most a constant number of simple elbow
motions.

. Figure 2. Line tracking motion.
The portions of chain between the labeled joints are drawn as straight lines to indicate that the shape of
these portions does not change during the motion. The portion of the chain between v, and v, slides along
the dotted line. Joints v, and v, act as fixed joints for elbows with elbow joints at v, and v, and free ends at
v, and v, respectively. L

Next, we define the simple motion of a closed chain L that is essential to the reconfiguration algo-
rithm. It is a combination of simple elbow motions that will cause at most six joint angles of L to change
simultaneously. The idea is that most of the linkage should remain fixed while a particular piece of it slides
along some specified line. In order to create the flexibility needed for the sliding, part of the linkage
behaves as an elbow whose free end is attached to the initial joint of the sliding piece, and another part acts
as an elbow whose free end is attached to the final joint of the sliding piece. The links connecting the
fixed joints of the two elbows do not move.



Definition: (See Figure 2.) LetL = vy, - - * v, be a closed chain, and let v,,v;,v.,v4,v. and v, be six (not
necessarily distinct or consecutive) joints of L as they would appear in cyclic order around the chain. These
are the only joints whose angles will be allowed to change, as each of the (at most) six link-disjoint chains
determined by these joints will each remain rigid during the motion. Let M be a line containing both v, and
v4. A line tracking motion is defined by the following.

1) Both v, and v, are to move along M while the shape of the subchain from v, to v4 remains unchanged.
2) The locations of joints v, and v, remain fixed throughout the motion, and none of the portion of the
chain from v, to v, moves.

3) The portion of the chain betweena v, and v, acts as an elbow with v, as the fixed joint, v, as the flexing
elbow joint, and v, as the free end joint. The subchain from v, to v, and the subchain from v, to v, are not
necessarily straight chains of links, but they behave like straight chains of links as their shapes do not
change internally during the motion.

4) Similarly, the portion of the chain between v, and v, acts as an elbow with v, as the fixed joint, v, as the
flexing elbow joint, and v, as the free end joint.

Clearly any line tracking motion can be decomposed into at most a constant number (independent of
n) simple line tracking motions in which joints change monotonically only. Specifying the initial
configuration, the line M, and the stopping position for the joint vy can be regarded as specifying the
motion completely. (From this, specifications for the constituent simple motions can be computed.)

3. The Algorithm

In this section, we assume that we are given two configurations of a closed chain that are in the same
equivalence class, so it is possible to move from one to the other. Our goal is to show how this may be
done using O (n) simple line tracking motions as defined in Section 2. The first step is to show how to
move any initial configuration of a closed chain to a triangular configuration with O (n) of these simple line
tracking motions.

Theorem 1. Any configuration of a closed chain of n links can be moved to a triangular configuration
using O (n) simple line tracking motions, which can be computed in O (n) time.

proof. We use a special case of line tracking in which v, = v, so the portion of the chain from v_ to v, is
empty. Furthermore, v,,v;,v.=v4,v, and v, will be consecutive joints. The line M along which the joint
v.=vq moves will be the line containing v, that is perpendicular to the line through v, and v, (see Figure 3
below).
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Figure 3. A special line tracking motion with v, = v,.
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The algorithm for moving a closed chain to a triangular configuration using this specialisation of line
tracking motions is as follows. Take any five consecutive joints, say v, through vs (this step may be
skipped if the initial configuration has only four sides); now, using the motion described above, begin to
move v3 away from the line through v, and v along the line through v perpendicular to the line through
v, and vs. This guarantees that both v, and v, are opening because v is moving away from both v, and
vs. Hence the motion can continue until one or both of v,, v4 straighten. This may require more than one
(but at most a constant number) of simple line tracking motions because the angles at joints v, and vs may
first increase, then decrease. The joint (or joints) that becomes straight is then held rigid, and the process is
repeated until only three or four joints remain unextended.

Once the configuration becomes a quadrilateral, we apply one more line tracking motion, with the
joints v, and v, identified, the joints v, andv, identified, and with v.=v,; moving away from v,=v;. This
moves the original configuration into a triangle using only O (n) simple line tracking motions that are easy
to describe and compute. [0

To convert one configuration of a closed chain to another, a natural way to proceed is to move both
the initial configuration and the desired final configuration to triangular forms. If these forms were

_ congruent, then we could move the initial form to the final form via the triangular form as an intermediary:

we would just move the initial configuration to triangular form, then undo the motions that take the final
form to the triangular form. (Here we are concerned with obtaining a cormrectly shaped and correctly
oriented configuration, as such a configuration can be moved by a single translation and a single rotation to
its desired final location.) However, it need not be the case that applying the algorithm in the proof of
Theorem 1 to both the initial and final configurations will result in a congruent, correctly oriented triangle.
There are two problems. Firstly, the two triangles could have different joints functioning as vertices of the
triangle. Secondly, the two triangles could differ in orientation (clockwise versus counterclockwise as the
vertices are read in order of increasing label). The next lemma handles the first problem.

Lemma 1. Given two triangular configurations A and B of the same closed n-link chain, it is possible to
move A to a triangular configuration that has the same vertices as B using at most a constant (independent
of n) line tracking motions. The resulting triangle either looks like B or a mirror image of B.

proof. The straightforward proof goes by case analysis of the location of the vertex joints of A in the chains
making up the sides triangle B.

Now let us address the second problem: suppose that the initial and final configurations of the origi-
nal closed chain are moved into triangles whose shapes are mirror images of one another. From [LW], we
know that if the chain is not invertible, then it is impossible to move between the two given configurations
by any means. Hence let us assume that the chain is invertible (i.e., that the lengths of its second and third
longest links sum to at most one half of the sum of all the link lengths). The only remaining step in carry-
ing out the scheme outlined above Lemma 1 to move an invertible chain from triangular configuration A to
a mirror image triangular configuration B. To do this, we observe the following.

Observation 2. If an invertible chain has a joint v; that cannot be straightened because /; + I;,, is greater
than the sum of the remaining link lengths, then it must be possible to fold joint v;. This is because any
transformation that changes the orientation of a chain must make each triple of joints collinear at some time
during the transformation. If v;_,, v; and v;,, cannot be made collinear by straightening the joint at v;, then
v; must be capable of folding. In particular, this means that the rest of the chain must be flexible enough to

_allow this to happen. Consequently, the chain section from v;,, to v;_; cannot contain a link that is too

long — i.e., a link whose length, minus the sum the the remaining link lengths in that section of chain, is
greater than the absolute value of the difference between /;,; and /;. Such a situation in that section of
chain would prevent v; from folding, contradicting the invertibility of the entire chain.

Theorem 2. Given an invertible n-link chain in the shape of a triangle A, the chain can be moved with a
number of simple line tracking motions bounded by a constant independent of n to a configuration B
whose shape is the mirror image of A. The time required to compute the motions is in O (n).



proof. Let the joints at the vertices of A be v, v; and v,. Without loss of generality, suppose that the joints
have been labeled so that the longest link of the chain occurs in the side of A between vg and v;.

If v, is not v;,;, then in the side joining v; to v,, find that joint v; such that the length of the chain
from v, to v; is at most half the perimeter, but the chain from v t0 v;,; has length greater than half the
perimeter. If v; is not v;, hold v, fixed and move v; away from v, using a line tracking motion until v;
straightens. We now have a triangle whose vertices are vo, v; and v;, with the longest link in the chain
occurring in the side containing vo and v;.

Now freeze all the joints in the side containing vo and v;. The resulting closed chain is still invertible
because the sum of the second and third longest links in the new chain (this sum remained the same or
decreased) is at most half the sum of all the link lengths (this quantity did not change). However, joint v;
cannot be straightened in the new chain. Hence by Observation 2, it must be possibie to fold v;.

If v;4 is not vy, hold v, fixed and move v;,; away from v, until v, straightens. Now we have a tri-
angle whose vertices are vy, v; and v;,,, and the chain section from v;,; 10 v has no links that are too long
to prevent v; from folding.

In the section of chain from v;,; t0 vo, locate joints v, and v,,, such that the length of chain from
Vj41 10 v, is at most half the length of chain from v;,; t0 vo, but the length of chain from v;,, to v,,, is
more than half the length of chain from v;,; to v,. (Possibly v, = v;,; of v,y; = v, but there is at least one
joint interior to the section of chain from v;,; to v,.)

Now suppose v, is not v;,,; otherwise skip the following step. Hold v fixed and use a line tracking
motion to move v;,; toward v, bending at v; and v,, until v; or v, folds.

Suppose that v, folds or that v;,; = v,. (If v; folds first, then the following step can be skipped.)
Joints vj,y, v,, v,41 and vo are collinear. Using a line tracking motion, move the section of chain between
vj+1 and v, on the line through it and v, toward v, bending at v; and v,.,, until v; folds. (Note that v,,
cannot fold first, or v; would not be able to fold at all, contradicting the invertibility of the new chain.)

At this point, we have v, vj, vj,; and v, collinear with v; folded. Undo the previous motions to
return v;,, 10 its original position, but move v; to the opposite side of the line of motion through v,. This
results in a triangle whose shape is the mirror image of the original one.

The number of simple line tracking motions is bounded by a constant independent of n, and it is easy
to see that the amount of time needed to compute these motions is in O (n). O
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