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In manufacturing processes, a stream of like parts must
often be oriented before assembly. A parts feeder is a
mechanism that orients parts: conceptually, a stream of
parts in arbitrary orientations is fed into the device from
one end, and from the other end the parts emerge in a
single fixed orientation. Natarajan [Nat89] formalized an

abstract notion of plans for orienting parts, as a sequence -

of operations on parts designed to bring them into desired
orientations, and studied the complexity for certain classes
of operations. Goldberg [Gol], Goldberg, Mason and Erd-
mann [MW85, GME91] and Rao and Goldberg [RG91]
considered the problem of generating such plans for pla-
nar polygonal parts under simple pushing and grasping
operations performed by a common parallel-jaw gripper,
without sensors. Each operation reorients the part, but re-
veals no information about either the initial or final orien-

tation of the part. (Hence the plan is oblivious, inasmuch
as it needs no information on the orientation of the part
to affect the control structure of the algorithm to achieve
correct results.) Using these operations, they were able
to construct an algorithm to generate a plans for orient-
ing any planar polygonal part (up to symmetry) in O(n?)
steps. Because of experimental evidence, they also con-
Jjectured that only O(n) steps were required to orient any
polygon in this model, which was shown in [Gol] to imply
the existence of an O(n?) bound on the time for construct-
ing such plans for any polygon.

In this paper we prove Goldberg’s conjecture, and es-
tablish tight upper and lower bounds on the number of
steps necessary to orient a planar polygonal part in this
and in some related models. We also extend these results
to the following related problem. A gripper, equipt with a
single sensor for detecting the distance between its parallel
Jaws upon closure, is capable of making diameter probes
of a given polygon. We give a linear upper bound on
the number of such diameter probes needed to distinguish
among a finite collection of known polygons.

Because of space limitations, we consider only a sin-

*The full version of these results is presented in the following USC
Technical Reports: “The Complexity of oblivious plans for orienting
polygonal parts” (USC-CS-92-502), and “Distinguishing polygons
by sensing diameters” (USC-CS-92-503). Correspondence should
be directed to the second author at ierardi@flash.usc.edu.

gle model, and omit certain details in constructions and
proofs.

1 Polygonal Parts

Natarajan [Nat89] formalized this planning problem in
terms of a set of functions — called transfer functions —
mapping orientations to orientations for some fixed part,
modeling the action of some physical device for effecting
the desired reorientation. The objective is to construct an
oblivious plan for that part, conceived as a sequence of
such functions fy, ..., fi such that

frofem10---0 fi(SY) = {g}

for a fixed goal orientation g € S'. Natarajan also iden-
tified a subclass of transfer functions for which plans and
their construction are provably simpler. As in [Gol], we
consider only planar polygonal parts. A part is polygonal
if its convex hull is a polygon.

1.1 Transfer functions

Let P be a polygonal part. We identify the set of ori-
entations of a polygonal part in the plane with points in
S1, the unit circle. Following Natarajan, we say that a se-
quence of n distinct orientations s, .. ., s, is called ordered
if there is an appropriate identification of S; with the real
interval [0, 27) under which s; < si41 (i = 1,...,n = 1).
A function f : S? — S! is called monotonic (or order-
preserving) if for every ordered sequence of orientations
81,...,5n, the sequence f(s,),..., f(sn) is also ordered.

By a transfer function, we mean a function f : S! — S!
which models some feasible primitive operation on ori-
entations. Goldberg et al. showed that a useful set
of transfer functions may be effectively constructed for
polygonal parts under the action of a parallel-jaw gripper
[MW85, GME91]. In this abstract, we consider the fol-
lowing types of actions. (A plan will use only one type.)
In a pure squeeze action, the gripper in a given orienta-
tion closes and grasps the part, causing the part to rotate
in the plane until it reaches a stable configuration (where



the gripper can close no further). In this case, the sta-
ble orientations correspond to local minima of the poly-
gon’s diameter function — the mapping from orientations
to diameters of the polygon. Although conceptually and
computationally simpler, pure squeezing unrealizeable in
practice, since some “pushing” is unavoidable, Push-grasp
actions were proposed as a more realisitic alternative. In
this case, the gripper is put into a given orientation and
one surface of the gripper is swept across the plane, caus-
ing the polygon to rotate into a stable contact with the
sliding surface. At this point the second jaw of the gripper
is closed on the polygon, perhaps causing it to rotate into
another stable orientation. The transfer function realized
by the two phases of the action — pushing and grasping —
can be computed from a knowledge of the geometry of the
part, its centroid, and its diameter function. Composing
these yields the transfer function induced by the operation
on a given polygon. The construction is discussed in [Gol].
In both of these cases, the relation between initial and fi-
nal orientatiorns‘is not necessarily functional, although it
is many-one on all but a finite number of orientations. For
convenience in this abstract, we assume that the transfer
function is extended to a total function consistent with
this relation.

For either action, there is a family of transfer functions,
where each member of the family is generated by placing
the gripper in a different orientation (relative to the world
coordinates). For a fixed polygon, any two such transfer
functions are related by a simple translation of S;. So
if fa; is the function induced by the gripper in orienta-
tion a; € Sy (i = 1,2), then if fo,(s) = t it follows that
fas(s — a1+ a3) =t — a1 + a3. We generally shall fix one
distinguished orientation (say 0 € S*) for the gripper and
call the induced transfer function f the transfer function
of the polygon. When « is the actual orientation of the
gripper in the world coordinates, then the part, when in
orientation a + a, is mapped to f(a) + a.

The relation induced by either pure-squeezing and
push-grasps on a fixed polygonal part has the following
properties.

1. It is functional on all but at most a finite number of
points. We let M be the finite set of points for which
this relation is not many-one.

2. f is monotonic (order-preserving).

3. Write F = f(S* \ M) for the set of fixed points of f.
Then F is finite. The sets f~!(a), as a ranges over
points in F, comprise the connected components of
S\ M.

For convenience, we shall assume that for all a € F,
f~1(a) = (b,¢) for some b,c € M. (This merely max-
imizes the cardinality of M.) In this case, the transfer
function f is uniquely determined by F and M, and we
write f = (F, M).

The complexity of the plans constructed in the next
section will be measured in terms of the complexity of f,
where n = |F| = |M]|. It is easy to see that for the above
actions, n is never more than three times the number of
edges in the convex hull of a given part. Below we use
the term “transfer function” to refer to functions satisfy-
ing these criteria. For completeness, we assume only that
when m € M, f(m) € {m, f(m % €)} for every sufficiently
small e. This models the situations which arise above,
where a point in M may be an isolated stable orientation,
or may be mapped into the “nearest” stable orientation in
F.

We also consider only aperiodic transfer functions. It is
easy to see that a function with a periodic transfer function
can, at best, be oriented up to symmetries (of the transfer
function) by these actions.

Finally, we assume that all orientations of the polygon
are expressed relative to the orientation of the gripper.
Suppose that we start with the gripper in orientation 8
and execute the following steps: (1) reorient the gripper by
a@; (2) apply the gripper. Then a == b relates orientations
a of the polygon, relative to the original orientation 8 of
the gripper, and the final orientation b of the polygon,
under the induced action, now expressed relative the new
orientation §+ « of the gripper. Similarly, we write f, for
the function fa(a) = f(a — a).

1.2 Additional notation

Let f = (F, M) be a monotone, aperiodic transfer function
with |F| = n. We shall generally assume a fixed ordering
has been chosen for elements of FUM. Since f~(a) is an
open subset of S!, we may also define {b € f~1(a): b < a}
in the natural way. For any fixed point a € F, we define

@) = {b<a:f(d)=a}
r(@) = {d>a:f(b)=a}.

2 Constructing O(n)-Step Plans

In this section we prove that for every monotone, aperiodic
transfer function f = (F, M) and every goal orientation g,
there is an oblivious plan of fewer than 2|F| steps which
orients any polygonal part with this transfer function. By
a fized, oblivious plan of m-steps, we mean a sequence
of reorientations for the gripper (ay,.. ., m) relative to
some fixed initial orientation in the world coordinate sys-
tem. Without loss of generality we assume that the initial
orientation of the gripper is 0. We say that an orientation
a € S! is an active orientation at step i if

Q. [« F78 .
So=bs =Ds ... I g

for some 89, ...,5;-1 € S'. The plan correctly orients the
polygon to the goal orientation g if g — Y iz, @i is the only
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active orientation at step m. We observe that if there is a
plan which brings a polygon into the orientation g, then
we can always recover a plan for the goal ¢’.

Lemma 2.1 If(ai,...,am) is a plan which orients a part
to orientation g, then for any orientation ¢’ (a1 + [¢’ —
gl,-..,am) is a plan which leaves the polygon in orienta-
tion g'.

Hence it suffices to construct plans which bring every ini-
tial orientation into an arbitrary but fixed goal orientation.

2.1 A Special case

Under our assumptions, the two steps suffice to reduce
the set of all active orientations to those in F: the first
step reduces the problem to orientations in FUM, and one
more appropriate grasp will reduce these to a subset of F'.
This immediately implies that the active orientations at
every step 1 > 2 form a subset of F. Let ao,...,as-1 be
an ordered enumeration of the fixed points in F, with a; <
""8it+1 mod n for all i = 0,...,n— 1. Let ¢ = max,er|r(a)].
We first consider those transfer functions for which there
is a unigue fixed point — say ao — such that |r(ao)| = c.
For any such f we have the following plan. Let ¢ > 0
be a small constant such that (1) ¢ — ¢ > |r(a;)|, and (2)
aj—c+eg M for all j # 0. It is clear that such an ¢
always exists.

1. Reduce the problem to active orientations in F only.

2. foreachi=n-1,...,1,

(a) reorient the gripper by ¢ — ¢, moving a; to a; —
¢+ ¢; and .

(b) apply the gripper.

We show that for any initial orientation s of the polygon,
this plan puts the polygon into the fixed orientation ag
(relative to the final orientation of the gripper).

Proof. By our assumptions on the transfer function f, af-
ter the first application in Line 1, the only active orienta-
tions are fixed points in the set F'. Each successive applica-
tion of f._. moves points in F' to points in F. Continuing
through the plan, at each step we reorient the gripper by
c—e¢ and apply it through a single application of f._.. For
each fixed point a;, this yields a sequence of fixed points
a;, ga.-, = ..= a;, with each a;; € F. It suffices
to prove that for any a;, € F, a;, = ao. So let a; be any
fixed point, 7 > 0. Since |r(a;j)| < ¢ — ¢, by our choice of
cand ¢, a; —c+¢ & f~1(a;). Since =5 maps F into F,
it follows that f._.(aj — c+¢€) = ax for some ar € F. It
is easy to see that a; € {ay,...,a;j—1}, by the maximality
of ¢ and the fact that f is order-preserving. This proves
that the sequence of indices i3, 13, . . . is strictly decreasing
until we reach some #; = 0.

Since ¢ = |r(ao)] and ¢ > € > 0, f._¢(ao) = ao. So
once a fixed point has been collapsed to ay, it is mapped
to ap by each successive iteration of the loop at Line 2.
The correctness of the plan follows immediately. Clearly,
no more than n + 1 steps are required. O

2.2 The General case

As above, let ¢ maximize |r(a)| as a ranges over points in
F, and let ao,...,a,-1 be an ordered enumeration of F.
Note that ¢ > x/n, and |f~1(a)] < 2cforalla € F.

The algorithm of the previous section fails when there
is no unique a; for which r(a;) = c. Let a;,,...,a;,_, € F
be an ordered enumeration of the fixed points for which
|r(a;;)| realizes this maximum. (These are just the fixed
points of f7-, 1.) To adapt these plans to the general, case
we need the following lemma.

Lemma 2.2 (Stretching Lemma) Let 0 < d < 2.
Then if f does not have period d, there are orientations

a,b € S* such that d = |(a,b)| and d < |(f(a), £(b))]-

Proof. Partition S? as follows. Let L = (J,¢ri(a) \ M.
Since F and M are disjoint, this is necessarily a non-
empty, open set. The orientations in L are candidate loca-
tions for the point a, the points for which f(e) < a. Since
b must be located at a distance of d from a, this constrains
btoliein L +d. Let R =J,crr(a) \ M. Now if we can
put ain L, and b in R, then f(a) < a and f(b) > b, and
so the image of the interval (a,b) under f has grown. To
achieve this, we must have 6 € RN (L + d). So if this set
is non-empty, there exists such a choice.

We next show that RN(L+d) is non-empty whenever f
does not have period d. For a contradiction, assume that
RN(L+d) is empty. Then R is contained in S*\ (L+d) =
(R+d)UFUM. But R+dUF UM is just the closure
of the open set R+ d. This implies that R and R+ d are
compact open sets of the same measure. But if R C R+d,
then R = R+d, from which it follows that f has period d.
So RN (L + d) is non-empty whenever f is does not have
period d. It follows that if we choose b € RN (L +d), and
set a = b—d, then the statement of the lemma is satisfied.
@]

As a consequence, it easily follows that for any a,b € F,
with a < b, there are always orientations a, 8 such that
the following steps map b to b+ 6 (for some 6, 0 < § < 2¢)
while leaving a fixed: (1) reorient the gripper by a; (2)
apply the gripper; and (3) reorient the gripper by 8. This
is a straightforward application of the Stretching Lemma.
Note also that, if there are m > 0 active orientations be-
fore this sequence of actions, then there are no more than
m active orientations afterwards.

As above, let a;,,...,a;,_, be an ordered enumeration
of those fixed points for which |r(a;;)| = c. Choose ¢ such
that (1) c—€ > |r(am)|, (2) am —c+€ € M and (3) € < §;,



foralm=1,...,.n—1and j=0,...,k—1. We then
consider the following plan.

1. Reduce to active orientations in F only.
2. Foreachj=k-1,...,1do:

(a) While there are active orientations in (a;;,a;,):
reorient the gripper by c — ¢, moving a;; to a;; —
¢+ ¢, and apply the gripper.

(b) If j = 0 then

i. move a;; to a;; — §; while leaving a;, fixed

(for some 0 < §; < 2c¢), using the Stretching

Lemma;

1i. reorient the gripper by ¢ — ¢, moving a;;_,
to a;;_, —c+¢; and

iii. apply the gripper.

Proof. The arguement of the previous section shows that,
for each j, the loop in Line 2a collapses all fixed points be-
tween a;; and a;;,, into a;; in a number of steps bounded
by the number of points in F N (ay;,a;,,,). After the
application of the Stretching Lemma in Line 2(b)i to
the points a;; and a;,, a;; is moved to a;; — &; (some
6; > 0). This moves the image of a;; closer to a;,, so
that f(a;; — ¢ — €~ §;) = amm for some m < i;. Hence
the action at Line 2b will always map the fixed point a;;
into a; for some k < i;. We can then show that, for any
a € F, a # a;,, whenever there are no active orientations
in (a, ai,) o

1. ifa & {ai,,...,8i,_,}, then each iteration of the loop
at Line 2a there are no active orientations in (a, a;,),
and

2. ifa=ga;; (j=1,...,k—1), then after executing Line
2b there will be no active orientations in (ai;-1,ai,).

~ So when the plan terminates, the only active orientation
is a;,. Since grasp leaves the point a;, fixed, this is the
only active orientation upon termination.

For the complexity: At most two step reduce S* to n ac-

tive orientations. For each of the fixed points a,...,a;_;
we use two steps in Line 2a. The loop at Line 2b is iterated
at most once for each fixed point not among a;,, ..., a;,_,.

So the plan requires n + k steps. O
This proves the following theorem.

Theorem 2.3 Let f = (F, M) be a monotonic, aperiodic
transfer funclion with n = |F|. Let

Ha€ F : I(a) = mazeer|i(a)l}|
H{a€ F : r(a) = mazeerir(a)[}|

and let k = maz(c;,c,). Then there is a plan of n+k < 2n
steps for orienting any polygon with transfer function f.

a
'c,.=

Given a description of a polygon, it is straightforward to
show that such a plan can be constructed in O(n2) time.

3 Lower Bound

We show that for every n and k (0 < k < n) there is a
transfer function f, i (with parameters n, k) for which the
shortest plan has n+k—1 steps. Here we consider only the
case k = n — 1; the construction is easily generalized. By
the results of Rao et al. [RG91], every transfer function
J = (F, M) is the transfer function of a polygon with at
most 2n edges under pure squeezing.
Let f = (F, M) where

M = {2,46,...,2n-4,2n-2}

1
F = (M 2) .
f defines a transfer function on Rmod(2n — 1). To sim-
plify the argument in this abstract, we assume that f is
undefined on points in M.

Now suppose that there is a plan for orienting a polygon
with transfer function f to goal orientation g given by
the sequence of orientations ay,...,dn,. On the ith step,
we apply the function f;, to all active orientations. We

~work backwards. Let J be any connected open subset of

R mod(2n — 1) of integral size j = 2,...,2n — 1.

Claim 3.1 For any s, |f;1(J)| is an open interval of size

at most j + 1.

Proof. If j = 2j'+1, then the largest preimage is obtained
when J covers j' fixed points a, each of which satisfies
|[f~'(a)| = 2. Hence, for an appropriate s, |f;1(J)| =
2j’+ 1= j+1, and for all choices of s, |f}(J)] < j +
1. If j = 2j', the interval J can be made to cover j'
fixed points a for which |f~(a)| = 2, together with the
unique fixed point b for which |f~1(3)| = 1. Hence for an
appropriate s, |f;71(J)| = 25'+1 = j+1, and for all other
choices |f;71(J)| < j + 1. The openness follows from the
assumptions on the behavior of f at points in M. O

Now any correct plan f,,, ..., f.. must satisfy fan0---0
fa,([0,2n — 1)) = {g} for some g. By the previous ob-
servations, |f;1(g)| < 2 and, from the claim above and
a simple induction, |(fo; 0 ---0 f2,.)"}(g)] < m—i+1.
So m = 2n — 3 steps are required to get a preimage of
size 2n — 1; and since this is still a proper open subset of
[0,2n — 1), an additional step is needed to include all of
this interval.

4 Composing Plans

Suppose that we have m parts Py, ..., P, with transfer
functions fi,..., fm respectively. Then for each i, we can
construct a plan of no more than 2|f;] — 1 steps which
brings part P; into a known orientation g;. In addition, it
is straightforward to show that by composing these plans
— performing them in sequence, one after the other — we
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obtain a general plan of 2(3"I~, | fi|]) — m steps which will
bring any of these m parts into a known orientation. The
following lemma follows immediately from the construc-
tion presented above.

Lemma 4.1 Let 7 = (ay,...,at) be a plan for orienting
a polygon with transfer function f inio the orientation g.
Then there is an open neighborhood U; of each a; such that
every plan ' € Uy X - -+ x Uk, will take the given polygon
into the orientation g.

4.1 Composition of plans

Suppose that we have m parts Py,..., P, with transfer
functions fi,..., frm. Then for each i, we can construct a
plan of no more than 2|f;| — 1 steps which brings part P;
into a known orientation g;. In addition, it is straightfor-
ward to show that by composing these plans — performing
them in sequence, one after the other — we obtain a gen-
+ eral plan of 2(3°[2, |fi|) — m steps which will bring any of
* these m parts into a known orientation.

v —

Lemma 4.2 There are orientalions v, ..., Ym, and a
single plan of at most 2(3_[~, |fi|]) — m steps which, when
applied to any polygon P; € {P,..., Pn}, puts P; into the
fized orientation v;. :

The lemma is a consequence of Theorem 2.3 and the fol-
lowing observation. Write Sy, for the disjoint union of m
copies of S, a representation of the configuration space of
a polygon selected from {Py,..., Pn}. Write (i, @) for the
orientation & in the ith component of S,,,. Informally, the
element (i, a) corresponds to polygon P; in orientation a.

By the previous theorem, there exists a plan #; which
puts polygon P; into a fixed orientation g;, for each P;
and g;. For convenience, we write ; also for the induced
function on S, realized by this plan. By the correctness
of the plan, it follows that m;((i,a)) = (¢, ¢;) for all { =
1,...,mand all @ € S;,. On the other hand, it is trivially
true that for all j and a, 7 ((j,a)) = (j,«’) for some
a’ € S'. If the plans =; can be constructed to be functional
on the given set of polygons — so that =;((j, @)) is single
valued when i # j — it follows that

“j((i) gi')) = (i, g:)

for some fixed orientation g} € S{. A simple induction

then shows that the plans my,...,7,, when composed,
satisfy
Tmomi-10 -+ om((j,a)) = (j,%) fj<i

T O Wi 0 -+

om((ia)) = (m,gm)

for some sequence of orientations v;,...,Ym-1 € Sy Tak-
Ing Ym = gm proves the lemma.

It remains to show that the plans =; can always be
constructed so that they are functional on chosen orienta-
tions. Less formally, we need to establish that whenever

the first i—1 plans 7y, ..., m;_1, applied in succession, put
the first i—1 polygons into fixed orientations, then the ori-
entations used by plan #; keep each of these polygons in a
single orientation. That is, the chosen orientations for =;
do not fall at points where any of the transfer functions f;
may have indeterminate values. Hence it suffices to prove
the following lemma.

Lemma 4.3 Suppose that there are orientations
T,-.-,%i-1 such that
mire - om(iS) = (i)

Jor every j < i— 1. Then the plan m; can be modified so
that

(7, S) (3,9i) and

75(.7.171') (J',‘Y,')
Jor unigque values v}, ...,vi_, € S*.
This follows from the observation that for each transfer
function there are a finite number of “bad” values, and
that the actual orientations used in individual plans may
be perturbed slightly while still maintaining the desired

properties of those plans.
Further details are presented in the full paper.

5 Distinguishing Polygons

As a consequence of the results above on composition of
plans, we can also show that a gripper, which is equipped
with a single sensor for detecting the distance between its
parallel jaws upon closure, can distinguish among a finite
collection of known polygonal objects under very general
conditions. Define a function d which maps orientations to
diameters as follows. For any a € S, d(a) is the diameter
of the polygonal part in orientation f(a). We call this a
sensor map for the proposed gripper. We say that two
sensor maps d;, dz are equivalent if there is an orientation
a € S? such that

(Vz € S') di(z) = da(z +a)

and write d; = d; when this is the case.

Using the previous corollary, we can show that when-
ever two polygonal parts have distinct sensor maps, they
can in fact be distinguished by a short plan, in which the
number of steps is linear in the number of edges in the two
polygons.

Corollary 5.1 Let P, be a polygon with transfer function
fi and sensor map d;, and P, a polygon with transfer
function f, and sensor map dz. Then if d; # d3, a gripper
equipped with sensors (as described above) can distinguish
between these two polygonal parts using at most 2(|d;| +
|d2[) — 1 grasps.

On the other hand, fi = f, and dy = d,, then the parts
can not be distinguished by the proposed class of plans.



From the previous corollary we know that there are ori-
entations g;,92 and a single plan = which will put any
instance of polygon P, into the orientation g;, and any
instance of P, into the orientation g;. Using the distinct-
ness of the sensor maps, we can find an orientation a in
which to squeeze, such that the measured sensor value will
distinguish between the two polygons, using one diameter
probe (and hence one additional grasp)..

It is straightforward to extend these results to a collec-
tion of polygons, giving the following corollary.

" Corollary 5.2 Let P1,..., Py be as above. Then there is
a non—adaptive plan of at most 2y i, |Pi|+im(m-1)-m
grasps to distinguish e given part P from the collection
{P1,...,Pn}.
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