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On the recovery of a polygon’s shape from its diameter function*

(extended abstract)

Anil S. Raotand Kenneth Y. Goldberg?
University of Southern California
Los Angeles, California 90089-0273.

Abstract

In robot applications, a parallel-jaw gripper or scan-
ning light beam can be used to measure the diame-
ter of a part as a function of the angle of grasp or
projection. Can such measurements be used to de-
termine part shape? Our primary result is that the
part shape cannot be uniquely recovered from its di-
ameter function even when we are restricted to the
class of planar polygonal parts. We show that for any
polygonal part, there exists an infinite class of parts
with the same diameter function. Since most of these
parts have parallel edges, we consider the problem of
identifying a representative part having no parallel
edges from this class. We show that deciding if such
a part exists is NP-Complete.

1 Introduction

In this paper we consider the class of parts with
constant polygonal cross section or planar polygo-
nal parts. Our objective is to recover the shape of
a part’s cross section by grasping the part with a
parallel-jaw gripper at various angles and measuring
the distance between the jaws (the diameter at that
angle of measurement). We can also measure the di-
ameter as the length of the projection from a scanning
light beam. Both of these sensors are inexpensive and
widely available. Can such measurements be used to
determine part shape? This problem may thus be
posed in the context of geometric probing [1, 16] as a
question of shape recovery from “diameter probes”,
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which are weaker than projection probes [9] in that
they return only the length of the projection.

Let S' denote the space of planar orientations
[0,27). Given a fixed polygon P in an z — y coor-
dinate frame, the diameter function d : S* — R, of
P is formally defined as follows. Imagine two (infi-
nite) parallel lines [, h (supporting lines) both making
angle ¢ with the z-axis, just touching P so that P lies
entirely in the region between the two lines. In such a
case we say that the supporting lines I, h are at orien-
tation ¢ with respect to the (fixed) polygon P. The
distance between the two lines that are at orientation
¢ is d(9).

The diameter function has period 7. Also, diam-
eter function of a polygon is the diameter function
of its convex hull and so we can only seek shape re-
covery of the convex hull of a polygon. Therefore we
may assume all polygons considered in this paper to
be convex.

Our results in this paper are the following. Call a
diameter function valid if it is the diameter function
of a polygon. In section 2 we show that for every
valid diameter function d there exist infinitely many
polygons consistent with it. Thus, complete shape
recovery of a polygon from its diameter function is
impossible. However, we show that the orientation
of every edge of the polygon and partial perimeters
of the polygon along any orientation are recoverable
from the diameter function. Looking at the proofs
of these results, it becomes natural to consider shape
recovery for the restricted class of polygons having no
parallel edges (we call such polygons Minimal poly-
gons). In section 3 we show that although the number
of minimal polygons consistent with a given diame-
ter function is finite, complete shape recovery still
impossible. Also we show that deciding the question,
“Given valid diameter function d, is there a minimal
polygon consistent with d” to be NP-complete.

The proofs of many of the propositions in this ex-
tended abstract are omitted due to space limitations
and can be found in [13].



Related Work: The concept of diameter of a
set of points, the maximizing distance over all pairs
of points, is well studied in computational geome-
try [11]. Diameter functions have been alternatively
termed “width functions” in [17] and were applied
by Jameson [6] to determine grasp stability for a
part grasped in the jaws of a parallel-jaw gripper.
Goldberg [4] used the diameter function to gener-
ate plans, in O(n?) time, to orient n-gonal parts.
Rao and Goldberg [14] extend these results to curved
parts. Prasanna and Rao [10] study parallel mesh
algorithms for orienting parts. [8] investigates tac-
tile exploration of objects using a parallel jaw grip-
per. A major lemma (Lemma 3) in proving our NP-
completeness result is showing that the problem of
arranging (translating) a set of line segments, no two
of which are parallel, into a convex polygon is NP-
complete. This bears some resemblance to the re-
sult of Rappaport [15] which shows that the problem
of drawing (additional) line segments to connect a
collection of given fixed line segments (by their end-
points) into a simple circuit is NP-complete. In our
problem, we allow the segments to translate (only)
and we do not allow additional line connecting seg-
ments. Dekster [2] considers the problem of assem-
bling any r out of n segments into an r-gon and gives
a rule for this to be true on basis of the lengths of
the segments. However, in “assembling” he allows
rotations (in addition to translations).

1.1 Valid diameter functions

In this section we characterize valid diameter func-
tions. A function f : S! — R, is said to be a “good”
piecewise sinusoidal function (gpsf) if there exists a
finite integer Z > 4, and a cyclic ordering of orienta-
tions

$o<$1<...<¢z-1< ¢z =6

such that Vj € {0,1,...,Z—1}, and V¢ € [¢;, ¢ 41] :
f(8) = j cos(¢+a;), for some l; € R4, and a; € S*.

Notice that a gpsf is continuous, single valued, and
has a finite number of local extrema. Furthermore, a
gpsf is differentiable at all but a finite number (at
most Z) of orientations in S'. For a gpsf f, let
MAX(f), MIN (f) denote circularly ordered list of lo-
cal maxima, local minima orientations, respectively.
®(f), the set of transition orientations of f, denotes
the circularly ordered list {¢o,...,¢z-1} from the
definition of the gpsf f.

Theorem 1 A function f is a valid diameter func-
tion if and only if

1. f is a gpsf,

2. f has period @, and

3. MIN(f) € ®(f), MAX(f) N ®(f) = @ (that is,
paramelers of the sinusoid change at every local
minima and never change at any local mazima).
a

2 Main results

In this section we present our main results on shape
recovery from diameter. Theorem 2 presents a nec-
essary and sufficient condition for two polygons to
have the same diameter function. Theorem 3 shows
that there are infinitely many polygons, all satisfying
the conditions of Theorem 2, and all having the same
diameter function.

Let d denote a valid diameter function. Two circu-
lar lists of orientations (such as &(d), MAX(d)) are
equal if they are equal after some fixed offset is added
to every element of one of the lists.

From now on, maxima, minima stand for local
maxima, local minima (in a diameter function), re-
spectively. Orientations in k(d) = ®(d) — MIN(d)
are called kink orientations, or more simply kinks.
That is, kinks are the non-minima orientations at
which the parameters of the sinusoid describing d
change. Kinks and minima, i.e. orientations in
&(d) = MIN(d) U k(d), are all and the only orien-
tations at which an edge of the polygon P is flush
with (at least) one of [, k.

Let m, k, respectively denote the number of min-
ima, kinks in [0, 7), in the diameter function d of an
n-gon P. Let p be the number of pairs of parallel
edges in P.

Lemmal n—p=m+£&.0

Notice that the quantities on the left side n,p are
the polygon’s geometrical properties, while the quan-
tities on the right m, k are properties of its diameter
function. Let us refer to an n-gon having p pairs
of parallel sides as an n,p-polygon. Similarly, a di-
ameter function having m minima and k kinks is an
m, k-diameter function.

Corollary 1 If an n;,p;-polygon and an no,ps-
polygon have the same diameter function, then n; —
pr=ny—p;. O

The orientation of an edge e of P is the angle
modr made by the edge with the positive z-axis.
Let ANGLES(P) denote an ordered circular list of

211



212

orientations of the edges of P.! tp(¢), 0 < ¢ < ,
the partial perimeter of P restricted to orientation
¢, is the sum of the lengths of (at most two) edges
of P that have orientation ¢. We drop the subscript
when we are discussing only one polygon. Finally,
PARTIALS(P) denotes the circular list of the non-
zero partial perimeters of P ordered in the order of
increasing ¢.

A polygon P is said to be consistent with a valid
diameter function d between orientations [¢q, #s) if
the diameter function of P matches d between orien-
tations [@q, ¢s). This is written as P ~ d[¢,, ¢s)-

Throughout this paper, infinitely many stands for
uncountably infinite. We will show in Theorem 2
that, in a sense, ANGLES(P), PARTIALS(P) are
the mazimal non-redundant (and invertible) informa-
tion of the geometry of a polygon P obtainable from
its diameter function;, ANGLES(P) giving the ori-
entations of the edges of P, and PARTIALS(P) the
partial perimeter along each orientation. However,
the two lists do not completely determine P because
there could be up to two edges along an orientation
¢ and the t(¢) condition is only a constraint on the
sum of the length of the two edges. In fact, Theorem
3 shows that infinitely many polygons exist sharing
the same diameter function.

Lemma 2 Let 0 < ¢;1 < ¢2 be an adjacent triplet
of orientations in ®(d) of a valid diameter func-
tion d. Let 0,¢1,¢2 also be an adjacent iriplet in
ANGLES(P), for some polygon P. Further, let P
be consistent with d at orientations 0 and ¢2. Then,
if L,a are the parameters of the sinusoid between

(0,¢1), i.e. Lcos(a) = d(0), Lcos(a + ¢1) = d(¢1),

d(¢2) — L cos(¢2 + a) .

P~ d[0,¢5] <> t(¢1) = sin(¢2 — ¢1)

Theorem 2 Two polygons P,Q have the same di-
ameter function if and only if ANGLES(P) =
ANGLES(Q) and PARTIALS(P) = PARTIALS(Q).
m]

Diameter functions of parallelograms (4,2-gons) are
termed trivial.

Theorem 3 For every non-trivial valid diameter
function d there ezist infinitely many polygons hav-
ing the same diameter function.

It may be noted that if d denotes the diameter func-
tion of P, then ANGLES(P) is simply ®(d) restricted to
[0, x).

Proof: Fig. 1 shows this is true for diameter func-
tions of triangles. Towards the generalization as-
sume that P is a polygon having diameter function
d. P exists since d is valid. Let A,C be two ver-
tices of P touching I,k at a maxima orientation.
Let this maxima orientation be the zero orientation,
WLOG. Let D, B be the vertices adjacent to C in
P (i.e. DC,BC are two edges of P). Likewise,
let D#, B+ be the vertices adjacent to A. D+ and
D are on the same side of AC (as are B* and B).
D+ (resp. Bx) could be coincident with D (resp.
B). For example, in Fig. 1: the quadrilateral case,
D = D%, B = B*. Let ¢1, 1 —¢2, ¢3, —@d4 be the ori-
entations of edges CB, AB*, AD%,CD, respectively.
Without loss of generality assume ¢ < ¢4,4; < ¢3.
The other cases (including equality) are treated sim-
ilarly. See Fig. 2. F',E’ are can be arbitrarily
chosen on CB, ABx, respectively. G’ is such that
CG' is parallel and equal to BxE’. Thus we have
t(¢2) = |AB +| = |AE'| + |CG’|. H’ is determined
similarly. It is defined so that AH’ is parallel and
equal to BF'. Now, t(¢,) = |CB| = |CF'|+ |AH'|.

A line is drawn parallel to AD* (resp. (DC))
through H' (resp. G'). Points D#', D’ are chosen on
these two lines so that the distance between D’, Dx’
is equal to that between D%, D. Now the portion of
the polygon P between D+, D can be moved over to
between Dx', D’.

B+', B’ are defined in a similar manner. First a
line is drawn parallel to AD* (resp. DC) through
F' (resp. E'). B+',B’ are chosen on these lines so
that the distance between them equals that between
Bx, B. The portion of P between B, B* can be moved
over to between B’, B¥'. If this causes any problems
of convexity, then take the edges F'B’, E’'B+’', and
those originally between B, B*, sort them by orien-
tation, and arrange them between F’ and E'.

Simple geometry can be applied to show that
|H'D¥|+|B'F'| = |AD#|= t(¢3) and |G'D'| +
|E'B+'|= |DC| = t(¢4). For example to show that
|H'D #' |+|B'F'| = |AD%|, draw a line through H’
parallel to D+’'D’ intersecting AD* at Z. Now note
that triangle F'B’'B is congruent to triangle H'ZA
and so |B'F'| = |AZ|. Also note that H'ZD+D+' is

.-aparallelogram, and so |H'D ' |= |ZD = |.

Thus, the
two polygons P &ef A,Dx,....D,C,B,...,Bx, A and
P AHDY,. DGCF, B,. . . BE A
have the same diameter function by Theorem 2 since
tp =tp and ®p = ®p:. Finally, note that there are
infinitely many P’ since the choices of F’, E’ (along
a line segment) were arbitrary. O
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ABC is the given triangle.

Let x be any number such that O<x<1.

Pick points D.E on ABAC, respectively,
such that [DE! = x IBC and DE Il BC.

Flip the triangle about BC so that A falls on H.

CH U AB and BH I AC.

Pick points FG on BH,CH, respectively,
such that [FGI = (1-x) IBCl and FG Il BC.

Now hexagon BDECGF has same diameter
fmaionnni&bABC.lhu
[FGl| + [DEl =

UBR + [ECI =IACl

UBDI + IGCI = IBAI

Figure 1: Infinitely many hexagons hav-
ing same diameter function as given trian-
gle/quadrilateral.

3 Minimal Polygons

Theorem 3 is a negative result for shape recovery
from diameter: there exist infinitely many polygons
consistent with a given measured diameter function.
However, the proof of the theorem basically involved
showing that a particular length #(¢) could be split,
in infinitely many ways, into two segments (in the
polygon), both of orientation ¢ whose lengths sum up A, B, B, C, D, D* are vertices of the original polygon P. Portions of P betwee:

. t of th in this infini B,B* and D,D* are not shown. In the new polygon P’, D,D* B,B* do not exist
t‘l’ t(¢) T;‘“:’ mos 31 " Z;dy g(;ns mn 1slln ?Lte and are replaced by the 8 primed vertices shown. The method of construction
cass would have parallel edges ol varylng lengths. of y,ece eight points is shown in the proof of the theorem.

This suggests that we might define a representative . . A
.. . Both polygons P,P’ hav perimeter along ev entation and therefore
or minimal polygon as one without any parallel edges h‘:v,",?,e"fm d',’;ma; fsu”,::im. eSS

consistent with a given diameter function. Two obvi-
ous questions arise: does there always exist a rep-

resentative polygon for a given diameter function; Figure 2: Infinitely many polygons having the

and if a representative polygon exists, is it always . . .
. A .~ same diameter function as a given polygon.
unique? We show that deciding the former question g pove

is NP-complete in Theorem 5 and latter question is
answered in the negative in Theorem 4 by construct-
ing a counter-example, N

Formally, we define a minimal polygon to be a (con-
vex) polygon without any parallel edges, i.e. an n, 0-
polygon. Positive results for complete shape recov-
ery from diameter of minimal polygons might be ex-
pected in the light of the easily established fact that
for an m, k-diameter function there can be at most a
finite number (2™+¥-1) of minimal polygons consis-
tent with it. However:
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Theorem 4 Minimal polygons satisfying a given di-
ameter function are not always unique.

Proot: dee r1g. 3. U

The two polygons, omwnhtheshadededgesmdmeo!}wtwnhﬂxeboldedges
lowin

have the fol operties:
1. Both sgge set of orientations of edges.
e same total penmeter along every orientation.
3 Bo!.h have no allel ed .
h have the same diameter function.

Proof: Let algorithm MPFD(d), where d is an m, k-
diameter function, return true (resp. false) according
as whether there is (resp. is not) an m+ &, 0 polygon
P (fully) consistent with d.

Then we solve the MPFS problem using the fol-
lowing algorithm:

INPUT: description of n planar segments, no two
of which are parallel.

OUTPUT: true/false whether or not they form a
convex polygon.

1. Let ANGLES be a circular list of the orien-
tations of the input segments in sorted order
and let PARTIALS be a list of the lengths of
the segments sorted according to the order in
ANGLES.

2. By solving a system of 3n linear equations in 3n
unknowns (see proof of Theorem 2), it is pos-
sible to determine whether or not there exists
some (valid) diameter function d and a polygon
P’ such that: (i) ®(d) mod * = ANGLES, (ii)
PARTIALS(P') = PARTIALS, and (iii) d is the
diameter function of P’. The unique solution to
the equations provides a construction of d if it
exists.?

Th m:mmal polygons conistent with a given diameter function are not unique.

Figure 3: Two minimal polygons that have the
same diameter function.

Now we show that deciding that whether a mini-
mal polygon exists consistent with a given diameter
function is NP-complete. We begin with some def-
initions. By arranging a set of n planar segments
S0, ...,Sn-1, We mean translating them in the plane
so that if any two segments intersect, they do so only
at their end-points. All sets in this section are multi-
sets, 2.e. they could contain more than one identical
element. Consider the following problem.

MINIMAL_POLYGON_FROM_SEGMENTS
(MPFS): Given n segments, no two of which are par-
allel, does there exist an arrangement of them forming
a convex polygon?

Lemma 3 MPFS is NP-complete. O

Now consider this problem:

MINIMAL_POLYGON.FROM_DIAMETER
-FUNCTION (MPFD): Given an m, k-diameter func-
tion d, is there a minimal polygon P consistent with
d?

Theorem 5 MPFD is NP-Complete.

If there does not exist such a d, return “FALSE”
~and exit.

3. We assume that there exists such a valid d. Now
invoke MPFD(d).

Return “TRUE” if and only if MPFD(d) re-
turned “true”.

It is straightforward to check the correctness of the
algorithm and the fact that it runs in polynomial time
given that Algorithm MPFD does. O

4 Discussion

Since parallel jaw grippers and scanning light beams
are inexpensive and widely available, we ask: Are
diameter measurements sufficient to determine part
shape? We show that the answer is negative by con-
structing an infinite class of polygonal parts with the
same diameter-function as any -given polygon. Fur-
thermore, deciding if there is a representative (mini-
mal) polygon from this class is NP-Complete.

The good news is that we can recover some in-
formation about part shape, namely the list of edge
angles and the partial perimeters at each angle. This

2However, remember that P’ could be convex and have
parallel edges.



suggests that diameter measurements could be used
to recognize a part from a set of known parts. One
idea is to modify the parallel jaw gripper as in [3] so
that parts rotate into one of a finite number of stable
orientations when grasped. Since stable diameters
are not unique, one approach is to randomly grasp
the part and use a Bayesian estimator to update a
probability distribution on the set of parts [7] until
the distribution converges on a single part.

Although random grasping appears to have good
average-case performance, it’s worst case perfor-
mance is poor. If there are k polygonal parts, each
with no more than n edges, [5] shows how to con-
struct an O(kn) time strategy for recognizing parts
based on Goldberg’s parts orienting algorithm. We
are currently working on a method for generating op-
timal grasp strategies [12].
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