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1. Abstract

Applications such as data compression and
geometric modeling make use of low resolution
approximations to more complex objects. We
study two problems concerning the sparse
approximation of curves and functions. The
first problem requires the construction of a
piecewise linear curve B, given a planar
piecewise linear curve A and € > 0, such that
the parametric distance P(4,B) < €, and B
has the fewest break points over all such
curves. If A(t) denotes a parametrization of A,
and |||| denotes a metric, P(4, B) is the
minimum over all parametrizations A4(t) and
B(t) of max l4(¢),B(t)|l. For the special case

of the problem in which every piece of A4 is
longer than 2, and the L, metric, we give a
linear time algorithm; for the general case and
the L. metric, we give a linear time pseudo-
optimal algorithm. As for the second problem,
given integers ¢ and d, construct a C' piecewise
polynomial function of degree d, satisfying a
given set of discrete constraints on value and
derivative, and consisting of the fewest pieces
over all such functions. We give an efficient
pseudo-optimal algorithm for the problem.

2. Introduction

First we consider the approximation of planar
curves with respect to the parametric distance.
Intuitively, the parametric distance between
two curves A and B can be thought of as the
minimum length leash necessary for a person
on curve 4 to walk a dog along curve B, where
neither may "back up". Formally, let A(f)
denote a parametrization of a curve 4, and let

Il Il be a metric on R?. For two curves A and
B, the parametric distance P (A, B) is defined
as the minimum over all parametrizations 4 (t)
and B(t) of max l4@),B()]l. The parametric

distance is a natural measure of similarity
between curves. Determining the distance

between two given curves was investigated in
Godau (1991), Natarajan (1991a, b), and Alt
and Godau (1992). This is wuseful in
handwriting analysis, for example, where a
sample may be checked against those in a
database to find the closest match. Here, we
consider the problem of computing a close
approximation to a given curve, which finds
application to data compression schemes and in
systems where geometric data is stored at
different levels of resolution.

Given an error tolerance €, and assuming A4 is
a piecewise linear function A4 (x), Imai and Iri
(1986b) and Natarajan (1991a) give linear time
algorithms for computing a piecewise linear
function B (x) with fewest possible pieces such
that A(x)-e = B(x) = A(x)+e for all x.
Natarajan uses the general visibility algorithm
of Suri (1988), whereas Imai and Iri develop a
simpler algorithm for monotone polygons. Alt
et al. (1990) consider the approximation of
closed curves by simple convex polygons such
as squares and rectangles. Here, we generalize
the work of Imai and Iri (1986b) and Natarajan
(1991a) to the case of curves in the plane:

Problem 1: Given a piecewise linear curve 4
in R? with m break points, and € > 0, compute
a piecewise linear function B such that
P(4,B) =€, and B has the fewest break
points over all such curves.

Godau (1991) gives an O(m?) time pseudo-
optimal algorithm for Problem 1. By pseudo-
optimal we mean that the number of pieces in
the output is within a constant factor of
optimal, for the given €. Here, we give a linear
time algorithm, for the L, metric and the
restriction that every piece of 4 is longer than
2¢. If this restriction is relaxed, we have a
linear-time but pseudo-optimal algorithm.
Independently, Guibas et al. (1991) report a
linear-time algorithm for the problem for
general metrics, but under the restriction that



no two break points of 4 are within 2e of each
other.

We also consider a variant problem which adds
the restriction that the break points of the
constructed curve must be a subset of the
break points of the given curve. Toussaint
(1985), Imai and Iri (1986b), Melkman and
O’Rourke (1988) approach this problem using
dynamic programming. Of these, Melkman
and O’Rourke (1988) offer the best run time of
O(m?3log(m)). Ihm and Naylor (1991) offer an
O(m3) extension to curves in R>. In contrast,
our linear time algorithm for Problem 1 can be
extended to give a pseudo-optimal solution for
this problem.

The second problem we study allows
approximation by a function that is a piecewise
polynomial of degree d. This richer set of
representations may allow for greater
compression ratios for certain types of data.
Efficient piecewise polynomial approximation
of piecewise linear functions appears difficult,
instead we assume the input is a set of discrete
samples, possibly including  derivative
constraints.

Let R be the reals, and N the natural numbers.
For a function B:R-R and non-negative
integer ¢, B’ denotes the t'® derivative of B. B
is said to be C' if B is continuous up to and
including the ' derivative.

Problem 2: Given are (1) m constraints of the
form (x,y",y*,k) where x €[0,1], y',y* €R,
and k is a non-necgative integer, and (2) non-
negative integers d and ¢. Construct a function
B:[0,1]~R, if such exists, such that (1) B is
piecewise polynomial of degree 4, (2) B is C,
(3) for each of the m input constraints,
y =< B*x) <y*, and (4) B has the fewest
number of pieces over all such functions.

The above problem has a variety of
applications, including geometric modeling and
data compression. See Lyche and Morken
(1987), Netravali and Haskell (1989),
Rosenberg (1990), Ishijama et al. (1983)
amongst others. In this paper, we use the
results of Riviin (1964) to obtain a pseudo-
optimal algorithm for Problem 2. The
algorithm is pscudo-optimal in the sense that
the number of pieces in the constructed

piecewise polynomial function is optimal within
a factor of |1+ [(¢t+1)/(d -t)]), assuming that
t < d. For t = 0, this factor reduces to 2 for
all d, and for ¢t = d-1, the factor reduces to
d+1. Our algorithm uses linear programming
as a basic step. Assuming d is fixed, we can
use a fixed dimension linear programming
algorithm that runs in time linear in m, the
number of constraints, to get an overall run
time of O (mlog(m)).

The problem of simplifying B-splines is closely
related to Problem 2 except that in the former
the input is a piecewise polynomial function
rather than a discrete sample. Lyche and
Morken (1987) present a heuristic for the
simplification of B-splines, in the sense of
secking a spline on a subset of the knots of the
original spline, with respect to a given error
bound. Nurnberger (1989) presents a more
general procedure for the simplification of
splines.

3. Approximation Under the
Parametric Distance

In this section, we consider Problem 1, the
parametric approximation of planar piecewise
linear curves. Our algorithm builds upon the
techniques of Imai and Iri (1986a), who show
how to approximate piecewise linear functions.
The basic idea of their algorithm is to construct
a polygon by offsetting the input function, and
then to use a visibility algorithm to compute a
minimum link path within the polygon. The
minimum link path, computable in linear time,
is output as the approximation function. For
the more general case of piecewise linear curve
inputs, we show that a simple offset polygon
does not suffice, and instead conmstruct a
particular type of self-overlapping polygon, in
which we can use a modified visibility
algorithm to produce an approximation.

The input to be approximated is a piecewise
linear curve 4 with m breakpoints a4, . . . ,a,,
and m-1 segments A,,...,4,;. Our
algorithm widens the curve 4 by € to get an
error tunnel 4¢. The goal is that any path in
A*, starting within € of the first point of 4 and
ending within € of the last point of 4, should
be a valid parametric approximation to 4. We
compute a minimum-link path from one end of
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A¢ to the other, using visibility polygon
techniques. The resulting path will be a
parametric approximation B within € of A4
having the fewest segments possible.
Throughout this section, our error € will be
measured using the L., metric.

An idea that fails is to let A¢ be the e-offset
polygon of A. The e-offset of A is the polygon
consisting of all points within a distance € of A4,
as shown in Figure 1. The problem with the
€-offset polygon is that it contains paths that
"shortcut” the parametric approximation. For
example, curve C in Figure 1 contains no point
within € of @,. In fact, there is no simple
polygon that contains all valid approximations
and rules out all invalid ones. Instead, we
construct a type of self-overlapping polygon.

Our "polygon” 4¢ will offset the breakpoints
and scgments of A separately. For each
breakpoint g;, let S; be the square containing
all points within € of @;. (S; is an L, unit
circle.) For each segment A4; of A start with
the set of points within € of A4; and then
subtract the squares squares S; and S;.,
representing the endpoints of 4;, to leave a
tube T; as shown in Figure 2. If segment 4; is
short, the subtraction may disconnect T;. We
rule this out for now by requiring all segments
of 4 to have length = 2e. Later, we will say
how to get around this restriction.

Now imagine the S;’s and T;’s as being cut out
of separate sheets of paper, and "stitch” them
back together as follows. As shown in Figure
3, each T; shares two corresponding edges with
cach of S; and S;;;. Join T; to both squares
along these edges. At any overlaps of S;’s and
T;/s we arbitrarily say that the higher indexed
item is "on top". In general, 4¢ cannot be
realized as a simple planar polygon, but we can
view it as a collection of sheets, stitched
together along certain segments. Paths in 4°¢
may switch from sheet to sheet when going
between attached S;’s and T;’s, but may not
otherwise cross the boundaries of S;’s or T;'s.
We refer to A as the error tunnel. The main
result of this section is to show that the
polygonal visibility algorithm of Imai and Iri
(1986a) can be adapted to work in these error
tunnels.

Any path that stays within 4® certainly stays

within € of 4, and we would like to say that
any path from S, to S,, that stays within 4¢ is
a  parametric  approximation to A.
Unfortunately, such a path might "back up",
preventing a valid parametrization of 4. We
will be able to show that the path we construct
is a valid approximation to a parametrization of
A, but we postpone this until after the
description of our algorithm.

Visibility polygon techniques will be used in
constructing the approximation. Two points p
and g in 4 are said to be mutually visible if
there is a straight path between them that stays
within 4¢. The path may switch sheets where
they are stitched together. The visibility region
V(p) of a point p is given by

V(p) = {g € A¢|p, q are mutually visible},

and similarly, the visibility region V(S) of any
set S of points (such as a segment or a square
) is V() = U{V@)lp €S} Two distinct
points ¢, and ¢, can have the same "position”,
but be on different sheets. It is possible that
only one is visible from some other point.

3.1 The Algorithm

We use a greedy algorithm to conmstruct an
approximation B to the curve A. At each step,
we "look” as far as possible down the tunnel
A*, and add one segment to B. The algorithm
is fairly simple in concept, but requires quite a
few bookkeeping details. Since these details
are mostly the same as in Imai and Iri (1986a),

we highlight only the significant differences in
this extended abstract.

We first illustrate the algorithm with an
example. In Figure 4 are shown the input
curve A and the resulting error tunnel A¢.
Our approximation must start within the square
S, and we would like the first segment to
reach as far as possible. The visibility region
V), shown shaded in Figure 5, contains all
points in 4¢ that are visible from some point in
S;. Next is shown V,, consisting of all points
visible from some point in V;. Note that any
point in V¥, is visible from the window
separating ¥; from V,. Since the final square
S, is in V,, we are done, and we can output
the approximation shown in Figure 6.



An outline of our algorithm is as follows.
Algorithm 1

let the initial window w, be S,
i=0
repeat
compute visibility region V;,, from
current window w;
get new window w; ., from V;,,
i=i+1
until V; contains part of final square S,
/* place a breakpoint of B on each
window, working backwards */
let b; ., be any point on §,, visible from w;
for j = i,i-1,..,1 do
let b; be a point on w; that sees b; 4y
end

Next we describe how to implement the steps
that compute visibility regions and windows.
Visibility regions are computed by working
down the tunnel, considering each square S; in
turn as something that may delimit the lines of
sight. Eventually, some §; will be invisible
from the window. At that point, we can
determine the visibility region and the window
from which to start computing the next
visibility region. This is illustrated in Figure 7,
where lines of sight originating in §; can reach
S5, but not S¢. The two rays ¢, and ¢, delimit
the lines of sight that pass through all of
S1,...,5s. We refer to them as the left
extremal tangent t; and the right extremal tangent
t,. They determine the "most clockwise” and
"most counter-clockwise” lines of sight that
pass through all of the S;’s considered.

Efficient maintenance of the extremal tangents
is the crux of the approximation algorithm.
Each tangent remains "tight" at corners of two
S;. As cach S; is considered in turn, the
tangents are swiveled around one of these tight
points so they pass through S; and remain tight
at two points. Imai and Iri (1986a) maintain
"upper” and "lower" hulls while advancing
down the polygon, which allows -them to
quickly determine the next tight point. Their
technique relies on the fact that the polygon is
monotone and simple. Our error tunnel is
neither, but we show in the full paper how to
maintain left and right "pseudo-bulls”, which
allow the same maintenance operations. The
overall linear time bound results because any
edges of the current pseudo-hull that are
examined when a new S; is considered will
never be part of the hull again, and hence the

cost per edge is a constant number of
operations, since it is only looked at when
inserted or deleted.

3.2 Optimality of the approximation

To show that our parametric approximation
has the fewest possible segments of any
approximation within € of the input curve, we
use the fact that windows divide the error
tunnel. In the full paper, we use this to show
that any parametric e-approximation has at
least one breakpoint in each visibility region,
and hence at least as many breakpoints as our
approximation.

We must also show that the minimum link path
can be parametrized as needed. This seems
reasonable intuitively, but a rigorous proof that
the minimum link path doesn’t "back up" too
much involves a number of details that are
omitted here.

The following summarizes the approximation
algorithm.

Proposition 1: Given a piecewise linear curve
A with m breakpoints, having all segments
longer than 2e¢ in the L, metric, Algorithm 1
constructs in O (m) time, a piecewise linear
curve B with a minimum number of pieces
such that the parametric distance P(4,B) =< €
in the L, metricc. We can also describe the
parametrizations 4 (¢) and B(t) such that
4@®,B@)|| < eforallt.

In the full paper, we describe pseudo-optimal
linear time algorithms for the following
variants: (1) the restriction to input segments
longer than 2¢ is removed; (2) the output
break points are required to be a subset of the
input breakpoints; (3) the output break points
are required to lic on the input curve.

4. Approximating Functions

Proposition 2: Rivlin (1964). Given are (1) m
constraints of the form (x,y’,y*,k) where
x€R, y,y" €R and k is a non-negative
integer, and (2) a natural number d. We can
construct an instance of linear programming
with d+2 variables and 2m +1 constraints,
whose solution determines the coefficients of a
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polynomial P:R~R of degree d, if such exists,
such that for each of the m input constraints,
y = Prx)=y*.

Proof: Omitted in this extended abstract.
o

Proposition 2 leads us to an algorithm for
Problem 2. Let (xn}’i’}'i",kl)» (xz»}'i,y;,kz),
wee's @msYmsYm skm), be the m input constraints
such that x; <x, <x3--- =<x,. Starting
with x,, find the greatest index i; such that
X;j;+1 ¥ X;; and all constraints for xy,x;...,%;,
can be satisfied by a polynomial of degree d.
This can be achieved by invoking Proposition 2
in a binary search. Determine such a
polynomial, say P;, and delete all constraints
for x; through x;,. Then proceed iteratively
with the remaining constraints. We will then
have a sequence of polynomials P,,P,,..,P,,
where P satisfies all constraints for x; through
Xiy, P satisfies all constraints for x;,+; through
x;, and so on. Consider the piecewise
polynomial C that consists of P, on the interval
fr1,x;,], P, over the interval [x; +1,x;,] and so
on. C is almost the piecewise polynomial that
we desire, except that it is undefined on the
intervals briys Xiy+1), iy Xiy+1] etc.
Proposition 3 helps remedy the situation.

Proposition 3: Given positive integers d and '

t <d, and x;y{,y1 - - - yi and x,,0393 - - - yh,
where 0 = x; <x, < 1 and the y’s are from

R. We can construct a C* continuous piecewise
polynomial Q of degree d consisting of
I'St+1)/(d -t)] pieces such that for 0 =i <,
Q'G1) =y and for 0 =i =<1, 0'(x;) = yj.
Furthermore, this construction can be carried
out in time O ((d +1)*).

Proof: In this abstract, we omit the proof,
which involves setting up a simple system of
linear equations.

(m]

We can now combine Propositions 2 and 3 to
give Algorithm 2, a pseudo-optimal algorithm
for Problem 2. Within the algorithm, we
represent a piecewise polynomial C as the pair
(mc,Xc), where w is a sequence of
polynomials P,,P, - - -, and X is a sequence of
pairs of reals of the form (a;B;), with the
significance that

Ckx) = Pix), x € [;,B;)

Proposition 4: Algorithm 2 (1) outputs a
function B that is piecewise polynomial of
degree d, satisfies the input constraints, and
has the fewest number of pieces of any such
function within a factor of

(1+ [(t+1)/(d-t)]], and (2) runs in time
0 (T(@+2,2m +Dlog(m)+m @ + 1)*), where

T(v,c) is the time required to solve a linear
programming problem with v variables and ¢
constraints.

Proof: Omitted in this extended abstract.
o

Algorithm 2
input: an instance of Problem 2;
begin
Let
(xn)"x,yf rkl):
(xz,y'z,y'{,kz), =y
G Yoms Yom shm)s
be the m input constraints such that
X1 SX,Sx3°"° =X,
let B = (mp,X3), wp and X; initially null;
and C = (w¢,Xc), 7w and X, initially null;
leti = 0;
Whilei = m do
Using Proposition 2 in binary search and an
algorithm for linear programming, find
the largest index j = i such that
(1) Xj+1 # Xj and
(2) there exists a polynomial P of degree
d that satisfies constraints i through j;
append P to .
append (x;,x;) to Xc.
end
denote the elements of X as (ay,B;), (a3,B3), * -
denote the elements of wc as P,,P, - - -
forPl,Pz"',Pj"' €‘lrcdo
Bj = Bjt+(ej+1-B;V4;
Qs = @jep-(04q-B;V4;
Using Proposition 3, compute piecewise
polynomial Q = (g, X,) that is C'
continuous with P; and P; ,, at
at B; and a;., respectively.
append P;, g to mp;
append (a;, B;),Xp to Xj;
end
output B;
end



5. Conclusion

We presented efficient algorithms for two
approximation problems. Both were variants
of a previously studied problem, the piecewise
linear approximation of piecewise linear
functions. In the first case, we generalized the
input to include curves. In the second case, we
generalized the output representation to allow
higher degree polynomials. In addition, we
studied some variants of the problems, such as
requiring the output’s breakpoints to be a
subset of those in the input. A number of
interesting questions remain to be pursued.
For instance, can we achieve an optimal
approximation in the curve case (Problem 1) if
short input segments are allowed? Can the
algorithm in the piecewise polynomial case
(Problem 2) be improved to run in linear time?
This appears to require maintaining the
optimal solution of a linear program as
constraints are added, until no feasible solution
exists. For piecewise linear output, we can do
this in linear total time because the linear
program is 2-dimensional, and the constraints
are presented in order of increasing slope. For
polynomials, the solution polytope is higher-
dimensional, which appears to make the
maintenance more difficult. Finally, the
question of approximating a 2-dimensional
surface lying in 3 dimensions is important in
practice. Mitchell and Suri (1992) give some

initial results on this problem, which seems to
require significantly new ideas.
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