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Abstract

Given a set of n points in a d-dimensional space that are hypothesized to lie on a hyperplane, robust
statistical estimators have been recently proposed for the parameters of the model of best fit for the points.
This paper presents computationally efficient algorithms for high-dimensional, median-based robust estimators
(e.g., d-dimensional Theil-Sen and repeated median (RM) estimators). Basic techniques for achieving efficient
algorithms in the 2-D case are generalized to yield efficient algorithms in higher dimensions. Specifically, the
(randomized) algorithms presented are of (expected) running times O(n*~'logn) and O(n? 'log?n), respec-
tively, for the d-dimensional Theil-Sen and RM estimators considered. Both algorithms are space optimal, i.e.,
they require O(n) storage, for fixed d. We also briefly discuss an extension to nonlinear domain(s) of the
methodology introduced.

1. Introduction

Consider a set of n distinct points in d-dimensional Euclidean space. A fundamental problem in the
plane is that of finding a good line of fit for these points, and more generally in d-dimensional space to find a
good (d - 1)-dimensional hyperplane fitting these points. Classical approaches such as ordinary least squares,
L,, and L, estimators have been well studied (see, e.g., [13], for an overview), but suffer from a sensitivity to
outlying points. Recently there has been a growing interest in the use of robust estimators that alleviate this
problem by considering medians rather than mean values. These estimators include the Theil [18] and Sen
estimator [14], the repeated median (RM) estimator [15], and the least median squared (LMS) estimator [12].
Robustness is measured by the breakdown point of an estimator, which is roughly defined to be the fraction of
outlying data points that may cause the estimator to take on an arbitrarily large aberrant value. (See [3], [13],
for an exact definition.) For example, ordinary least squares, L, and L, have a breakdown point of 1 /n, ie.,
an asymptotic breakdown of zero. A number of papers have been written about the problem of computing
various robust estimators in the plane. These address the Theil-Sen estimator (or more generally, the slope
selection problem) [1], [6], [2], the RM estimator [8], [17], and the LMS estimator [16], [4].

In this paper we present algorithms for the computation of robust estimators in arbitrary fixed dimen-
sional Euclidean space. In particular, we consider the computation of the Theil-Sen estimator and the RM
estimator, as well as natural generalizations of these estimators to nonlinear domains. We show that the
Theil-Sen estimator (a 1-0.5%/4) breakdown point estimator) can be computed in O(n*~"logn) expected time
and O(n) space, and that the RM estimator (a 50% breakdown estimator) can be computed in O (n*~'logZn)
expected time and O(n) space. These improve the naive O(n?) time algorithms for both estimators. More
importantly, the naive algorithm for the Theil-Sen estimator requires O_(n‘) space, which is infeasible for all
but small instances of this problem. . o

To the best of our knowledge, these are the first reported algorithms for robust estimators in dimensions '

greater than two. Throughout the discussion, we make the general position assumption that no d + 1 points
are coplanar, and that no d points form a hyperplane that is perpendicular to any of the axes.
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2. The High-Dimensional Theil-Sen Estimator

For clarity of presentation, we focus mainly on 3-D space. It should be noted, however, that all of our
results generalize to the d-dimensional case. A three-dimensional version of the Theil-Sen estimator, otherwise
known as the Oja-Niinimaa (1984) estimator, is defined as follows: Given a set of points p;(z;, y;, ) in E®
(f=1,...,n), we want to efficiently compute the plane equation z = ;2 + f,y + 6, such that

\ L. A, Ag
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Choosing the plane representation z = 6,z + 6y + 03, the above defined estimator amounts to taking the
median values of 6;, 6,, and 63 over all (g] planes defined by the n points.

A brute force computation requires O(n®) time and space, and is obviously infeasible. Instead, we pro-
pose to extend our methodology to 3-D according to the guidelines below, so that it results in an O(n 2logn)
time and O(n ) space algorithm.

Apply a dual transformation such that each point p;(z;, ¥, ) is mapped to the plane
D(p;): z = z;z + y;y + 2z, and vice versa. It can be easily shown that the problem of finding 8, 8, and 8,
is now reduced to the problem of finding, up to a sign, the median z-coordinate, y-coordinate, and z-

coordinate, respectively, among the [g] intersection points of the planes D(p;). (Our general position assump-
tion guarantees a simple arrangement in dual space, i.e., no degeneracies take place.)

Without loss of generality, we demonstrate below an efficient computation of the median z-coordinate.
(The computation of the other median coordinates is very similar.) Analogously to our derivation for the slope
selection problem [2], we maintain two z-values, 7, and z, 00 < 7, < 73 < +00. Let (z,, 2;] denote
the half-open, half-closed interval of points z, 7, < z < 2y, and let I(z,, z);] denote the set of intersection
ordinates (i.e., the z-coordinates of the intersection points between triplets of planes) in this interval. As in
the two-dimensional case, we will maintain the invariant that the median intersection ordinate is in I(z,, zx .

Initially 7z, = -oc0, 2y = 400, and I(z,, zy] induces all (g) intersection ordinates. (The
assumptions/conventions made here are analogous to the ones made in [2].)

In princi[,)le, each stage of the algorithm should operate by contracting the interval (z,, z;] to a subin-
terval (z,, 74 ] which contains the median intersection ordinate. This could be performed by random sam-
pling of intersection ordinates, analogously to the derivation in [2]. Also, analogously to the probability theory
of our slope selection algorithm, the subinterval (z, ', z,..-'] would be chosen so that, with high probability, the
number of intersection ordinates in the subinterval, C, is expected to decrease by a factor of O(1/vn ) with
respect to the original number of ordinates, C. Since the initial interval contains O (n®) intersection ordinates,
it follows, with high probability, that after four stages the number of remaining intersection ordinates in the
interval would drop to O(n).

To verify that the interval contraction is successful (i.e., that the ordinate of interest is, in fact, con-
tained in the contracted subinterval), we apply an ordinate counting procedure to the subinterval (z,, z,,,'].
Let L denote the number of intersections in this subinterval. The verification is done based on the values of

and L. Should (z,, z,,.-'] not contain the desired ordinate, the algorithm either makes a recursive call to
(%10, 21| (the left adjacent subinterval), or to (zj; , 2:;] {the right adjacent subinterval).

. Once the number of ordinate intersections in the current interval is smaller than ¢ -n, for some constant
¢ >1, an O(nlogn) enumeration procedure followed by a fast selection algorithm are invoked to determine
the desired intersection ordinate.

A detailed description of the algorithm can be found in [9], [10]. The basic subproblem left to be solved
is how to count/sample intersection ordinates. In Section 3 we show that this can be done in O(nZlogn) time
and O(n) space in 3-D (and O(n®~'logn) time and O(n) space in d-dimensional space, for fixed d).



3. Intersection Counting and Sampling in Higher Dimensions

Extending the notion of intersection/inversion counting (and sampling) in the plane to efficient counting
of intersection ordinates in higher dimensions requires special clarification. Inherent to such an extension is the
notion of orientations (5], which are defined as follows: A sequence (po, ..., pq) of d + 1 points in E*, with
pi = (51, ..., %q) for all ¢, is said to have a positive orientation (denoted by po - - - pg > 0) if det(z,,) > 0,
where ;0 = 1 for each ¢. (Similarly, negatwc orientation and zero orientation are defined.) We embed the
concept of (posmve/nega.tlve) orientations in counting hyperplane intersections in d dimensions.

We first consider the 3-D case. Let H;, H;, and H, denote three planes in general position in E? i.e.,
assume that they intersect at a finite (umque) point (z,ﬂ,, Yk » zv»k) A.lso assume thelr intersection with any
plane z = z' is not parallel to the z axis. For some z let k(z), (= ", and l;(z') denote, respectively, the
intersection lines of the above planes with the plane z = z. (Obvmusly, each intersection line can be
expressed as z = z(y).) Note that for every two planes z = zj, and z = z; (%, < zx),

G(zio) || G(2a), G(20) 1| G(2ac), and b(zs,) || & (20)-

To detect whether or not H;, H;, and H; intersect in the interval (z,, z;;], we make the observations below
(similar observations can be made with respect to the y and z axes). Detailed proofs can be found in [9], [10].

Observation 1: The three planes intersect in the given interval if and only if the orientation of the sequence
of dual points (in the y-z plane) D({(=;,)), D({(21,)), and D(§(=,)) is of opposite sign to the orientation of
the sequence D (§;(z4)), D (i (2x)), D (h(zai))-

Observation 2: 7, < 75 < 7 if and only if the order of which an oriented /;(z,), say, intersects [;(z,)
and ly(z,,) is the reverse order of which a “consistently oriented” (25 ) intersects l (zx) and U (zy).

Observation 2 gives rise to the following procedure which counts the number of intersection ordinates in
a given interval. Without loss of generality, reconsider the interval (z,, zj;]. For each plane H;, perform
inversion counting on the list determined by the order of which an oriented /;(z;;) intersects the set of lines
{4 (=)} relatively to the sorted order of which a “consistently oriented” ; (z,,) intersects the set of lines
{l (z1,)}, for all j > 1. Since inversion countxng for k lines in the plane requires O(klogk) time, the total run-

ning time of the procedure proposed is O( E klogk) = O(n%logn) time. Also, since O (k) reusable storage is
k=1
required at each step of the above proposed procedure, the total space complexity is O(n).
Notice that the above described computation is equwalent to the summation, over all
H; (1=1,2,. “ n), of the number of intersections, I(H;), in (z,, z)] of the line arrangement
{H:nH;, ¢ < 7 < n} projected onto the z-y plane.

For general fixed dimension d, let H denote the set of hyperplanes {H;, i =1,2,...,n} in E¢. We
describe a recursive function Ord_Count(H, n, d, C, z,,, z3;) which returns the number of intersection ordi-
nates in the given interval, (z,, z)]. For each hyperplane H;, Ord_Count invokes itself and returns the
number of intersections associated with H; in the given interval. At each recursive step the dimensionality d
of the space considered is decremented and the problem is essentla.lly reduced to finding the number of n -1
hyperplane intersections in E¢~!. Once d =2, an efficient 2-D inversion counting procedure [2], is invoked.
Analyzing the complexity of Ord_Count, we obtain the result below.

function Ord_Count(H, n, d, C, z;,, z};);
begin
C’ =0
H = ﬁ
if d =2 then begin
Invoke an efficient 2-D inversion counting procedure;
return(C)
end;
for ¢t ;=1 to n do begin
for j: t+1tondobegm

—anI),
H’. H'U{H;"}
end;
Ord_Count(H, n -1, d -1, C;, 7, z;);
C:=0C+C;
end; .
return(C)

end;
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Lemma 1: The number of intersections, in a given interval, of n hyperplanes in E¢ can be computed in
O(n? 'logn) time and O(n) space, for fixed d.

Proof: By induction on d, and based on the fact that T(n, 2) = O(nlogn) (see [9], [10], for a detailed
proof). =

Once the number of (plane) intersections, C, in the given interval is known, the task of sampling n < C
intersections can be embedded in the above counting procedure in a very similar manner to that of the two-
dimensional case [2]. Again, we generate a set IS of n random integers distributed uniformly in the range
from 1 to C (allowing duplicates), and sort these integers. Next, we rerun Ord_Count, but in addition to
updating an intersection counter, for each IS_Indz € IS, we sample the IS_Indz-th z-coordinate. (Actual sam-
pling of the ordinate of interest of an intersection takes place only at the recursive level where d =2.) The
only difference with respect to the 2-D case is that here, the inversion count associated with H; should be
offset by the current intersection count. '

Based on Lemma 1 and the discussion above, we obtain the following main result (see [9], [10], for a
detailed proof):

Theorem 2: The d-dimensional Theil-Sen estimator can be computed in expected O(n? 'logn) time and
O(n) space, for fixed d.

4. The High-Dimensional Repeated Median (RM) Estimator

In this section we present an algorithm for computing the d-dimensional RM estimator, a 50% break-
down point estimator. Again, we first consider the 3-D case. The three-dimensional RM estimator fits a plane
equation z = 6,z + O,y + 03 to a given set of n points in E3, such that

P p

b = e A
where A, (p = 1, 2, 3) and A are defined in Section 2. The meaning of the above definition is the following:
Fix a point ¢ and a point j7+¢. Compute the plane coefficients determined by all triplets of points t, 7, k, such
that k5£4, 5 and store their median values. Repeat the process for all points 5 # 1, and (for each coefficient)
obtain the median value of the (median) values stored in the previous stage. Finally, repeat the process over
all points ¢ to obtain the RM estimate.

A brute force approach results in an O(n3) time algorithm. A straightforward improvement of the above
bound results from the following approach:

Apply a three-dimensional dual transformation as in the previous subsection. The problem is now
reduced to finding
d med med (H; N H; N H) 4
m‘e ?l;’.kn;‘e‘.".( J n ] n k)orlnde
in dual space, where (H; N H; N Hi )ordinae denotes the ordinate of interest (i.e., z, y, or z) of the intersection
point of H;, H;, and H,.
For each (dual) plane D(p;) = H;, invoke an efficient two-dimensional RM procedure to compute, for
example,
d (H; ; .
med el (H: N H; N Hy),
Notice that this step can be carried out by considering, for example, the projection of {H;NH;, j %1} onto
the z-y plane and invoking an efficient two-dimensional RM algorithm with respect to the z-coordinate. The
computation of the y and z coordinates can be performed similarly.

Take the median value of the n estimates computed in the previous step to obtain the corresponding. 9,.

The above outlined procedure draws strongly on the availability of an efficient 2-D RM algorithm. Based
on the algorithms presented in [8], [17], we state the following result:

Lemma 38: The 3-D RM estimator can be computed in expected O(n%log?n) time and O(n) space.

By definition, a recursive procedure, similar to Ord_Count, can be derived for the computation of the d-
dimensional RM estimator. See [9], [10], for a detailed discussion, which leads to the following result:

Theorem 4: The d-dimensional RM estimator can be computed in expected O(n‘~'log?n) time and O(n)
space, for fixed d.



5. An Extension to Nonlinear Domain(s)

Intuitively assuming that (statistical) properties of the estimators proposed in the previous sections are
retained, to some extent, in their “nonlinear counterparts”, the question of efficient computation remains a
valid issue of interest. We briefly discuss ctrcular arc fitting, and argue the applicability of our methods to a
nonlinear domain.

Consider a given set of points (z;, y,-), t =1, ..., n, that are hypothesized to lie on a circular arc. We
want to find the circle equation (z - d)*+ (y - )* = #% that fits the data according to the following
definitions:

(1) A nonlinear (3-D) Theil-Sen variant (for circular arc fitting) computes for each triplet (i, k),
1<4<j <k <n, the parameters of the corresponding circle (i.e., a;;, b;;&, and r;; ;). The ulti-

mate parameter estimates are given by the median values, over all (g] elements, of each of the above
sets; @ = med ¢; ;, b = med bijk, and ¥ = medr; ;.

(2) An RM circular arc estimator would compute a; ;;, bijx, and r;;; for all triplets (¢, k), such that

i7%j7k. The center’s estimated coordinates would be given by & = med x_n;zd kn;fd. %k,

R D s [

b = med med med b, ;;, and the estimated radius would be given by # = med med meg’i. Tiik- ’

¢ JHETkFELS § JF¥ETkFE

Extending our methodology to a nonlinear domain may not always be possible. One difficulty, for exam-
ple, lies in the fact that a nonlinear dual transformation may not always help determine the number of inter-
section ordinates in a given interval, as in the linear case. (See [9], [10], for a more detailed explanation.) In
general, counting intersections (without explicitly enumerating them) becomes much less straightforward.

Let us first clarify the notion of a “nonlinear dual transformation” in the context of our model fitting
methodology. For some m and n, let ¢ denote a functional mapping a vector of m parameters in E™ to a
function in E*. For example, the circle functional ®[a, b, r] maps the 3-vector (a, b, r) in E® to the function
®[a, b, r)(z, y) = (z —a)*+ (y - b)>-r? acting on E?, whose zeroes are the points on the circle of radius r
centered at (a, ). Now the dual defined by ® is a mapping ®* from E® to E™, where for the circle func-
tional :

®°(z,y) = {(a, b, r) | ®[a, b, r](z, y) =0 and r > 0},

ie., ®°(z, y) is the set of all points (a, b, r) in E® such that (z, y) lies on the circle whose center is (a, b) and
whose radius is r.

We now argue that our methodology in dual space (i.e., efficient intersection ordinate counting and sam-
pling, interval contraction, etc.) is applicable to circular arc fitting as well. The reason for this is that by
definition of the dual transformation introduced, there is a one to one correspondence between a circle in pri-
mal space, uniquely determined by three (distinct) points, and a point in dual space, uniquely determined by
three dual circular cones (of the points). This property enables us to count intersection ordinates (of triplets of
circular cones) in a given interval, and to compute @, b in a similar manner to the linear three-dimensional
case (Section 2). To estimate the radius, we may apply at this point an alternative hterarchical computation:
Select the median over all r; values given by r;2 = (z; — 4)? + ( - §)° Due to space limitation, we omit the
details of the algorithm, which can be found in [9], [10].

Based on our 2-D results, and in view of the above hierarchical scheme, we arrive at the following:

Theorem &: The (hierarchical) Theil-Sen and RM circular arc estimators can be computed in (expected)
O(n%logn ) and O(nZlog?n) time, respectively, and O(n) space.

6. Conclusions

Several computationally efficient algorithms for high-dimensional robust estimators were presented in
this abstract. Specifically, we extended the algorithmic methodology pursued with respect to the Theil-Sen
and the RM line estimators to their high-dimensional counterparts and demonstrated how to apply such exten-
sions to nonlinear domains (e.g., circular arc fitting).

The main characteristics of our extended methodology are highlighted by the following points:
° Our algorithms always terminate and return correct computational results, within machine’s precision.
. Space complexity for all cases considered is optimal (i.e., O(n)).

° (Expected) time complexity results are better than those currently known. In fact, the results claimed for
the RM estimators suggest, for the first time, algorithms better than O(n¢), d > 3, for estimators hav-
ing 50% breakdown points. Moreover, in view of ongoing work [7], the time bounds for the RM estima-
tor could be further improved by a logn factor.
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The algorithms described are simple, implementable, and practical.

In principle, our proposed methodology is applicable to nonlinear domains, although the conditions for
this are not fully characterized. It appears that circular arc fitting, a problem having significant indus-
trial applications, can be efficiently dealt with by the methodology introduced here.
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