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Abstract

We present an algorithm which computes the convex
hull of a set of n spheres in dimension d in time
O(n'41 4 nlogn). This algorithm is worst-case optimal
in any dimensions. It can also be used to compute the
convex hull of a set of n homothetic objects of E9. If
k is the combinatorial complexity of one of the objects,
the worst-case time needed is O(k(n/$1 + nlog n)).

1 Introduction

Though the complexity and the computation of the con-
vex hull of a set of points in any dimensions is a problem
which has been studied extensively, only a few results
about the convex hull of a set of spheres are known. The
previous results, which are given below, are only for the
case d = 2 and 3, and, as far as we know, there were no
results about the computation of the convex hull of a set
of homothetic objects .

The convex hull of a set of spheres is the smallest con-
vex body that contains the spheres. In two dimensions,
it consists of line segments and arcs of circles. In three
dimensions, the convex hull is composed of three differ-
ent kinds of facets (see Figure 1).

o Planar facets, which are triangles included in planes
tangent to three spheres.

e Conical facets, which are parts of cones tangent to
two spheres.

o Spherical facets, which are.parts of .the spheres of
E.
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In the plane, the convex hull of a set of disks can be
computed in ©(nlogn) time (see [Rap92]). In three-
dimensional space the complexity of the convex hull of
a set of n spheres is ©(n?) in the worst case, even for
collections of pairwise disjoint spheres ([SS90]).

The paper is organized as follows: In the next sec-
tion we give a lower bound on the complexity in any
dimension. In section 3 we present the algorithm which
computes the convex hull of a set of spheres and we show
in section 4 by studying its complexity that it is time op-
timal in dimension 3 and in even dimensions. In section
5 we extend our results to homothetic convex objects.

In the sequel we will denote by CH(O) the convex hull
of a set of objects O.

2 A Lower Bound

We want to show that the complexity of the convex
hull of a set of n spheres in dimension d (d > 3) is
Q(nl4)).

By the upper bound theorem, the complexity of the
convex hull of a set of n points in dimension d is ©(nl$))
in the worst case. A point can be considered as a sphere
of radius 0. Therefore, the complexity of the convex hull
of a set of n spheres is at least equal to the complexity
of the convex hull of a set of points, thus is Q(nl$)). If
d is even, |$] = [4] and we have finished. If d is odd,
we construct a set of spheres of E¢ which convex hull
has complexity Q(nrﬂ) starting from a an example of a
set of points in dimension d — 1 which convex hull has
maximal complexity.

. If d is odd, let. M be a set of n points (consid-

ered as spheres of radius 0) on the (d — 1)** or-
der curve (cost,sint,cos?2t,sin2t,...,cos -’%lt sin ‘—;-Lt)
of E4-1. The convex hull of M is combinatorialy equiv-
alent to a cyclic polytope (see[MS71]). The complexity
of a cyclic polytope is maximal (i.e. nlii'”). More pre-
cisely, there are 8(nl*5*)) (k—1)-faces (451 < k < d-1).

The points of the set M are on a sphere centered on
O with radius is \/‘—;1.

We add a vertex P on the Oz, axis. There is a one-one
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E= A planar cell
A conical cell

SN A spherical cell

Figure 1: The convex hull of a set of spheres in 3 dimensions

Ed-l

Y

® points on a (d - 1)'* order curve embedded in a sphere of E*-!

Figure 2: A set of spheres whose convex hull has size nl$]



correspondence between the (k + 1)-faces of CH(PU M)
containing P and the k-faces of CH(M).

We now add a set S of n spheres to our set of n+1
points P U M such that each sphere intersects nl%t)
(d — 2)-faces of CH(P U M). These spheres are centered

on the Oz4 axis and their radius decreases from 15-1

to 0. Each of the n spheres is chosen such that there
is just a small part outside CH(P U M) which creates
nl%5 facets (see Figure 2).

In this way, the complexity of the convex hull of the
2n+1 spheres PUM U S is n * nl*7) = nl41,

Theorem 1 The complezity of the convez hull of a set
of spheres in dimension d is Q(nr'ﬂ) in the worst-case.

3 The Algorithm

We first introduce some notations, then recall some of
the properties of duality, and finally give the algorithm
that computes the convex hull of a set of spheres.

3.1 Notations

Let A = {S},...,Sn} be a set of spheres in E? of which
we want to compute the convex hull.

We embbed E? in E9t! so that the hyperplane of
E4*!: z4.1 = 0 contains all the spheres. The (d+1)-th
axis will be called the vertical axis. Let S be a sphere in
E? with center (zj,...,z4) and radius R. Let ¢ be the
mapping that associates to S a point in E9+!.

¢:S5 —&(S)=(z1,...,24, R)

Let B be the set {¢(S1), ..., #(Sn)} of n points of E9+1,
Let Cy be a half lower cone with arbitrary apex, axis
Ozg41 and angle at the apex 7 /4.

For a sphere S in E? let §(S) be the half lower cone
with apex ¢(S) obtained by translation of Cp . The
intersection between the cone #(S) and the hyperplane
Z441 = 0 is equal to the sphere S. Let C be the set
C = {6(S1),...,0(Sn)} of n cones of E4*! (see Figure
3). The intersection between the convex hull of the set
of cones C and the hyperplane z44; = 0 is equal to the
convex hull of the set of spheres A.

Let O’ be a point inside CH(B).

- Theorem 2 Any hyperplane of E® supporting the con-
vez hull of the set of spheres CH(A) is the intersection
with £441 = 0 of a unique hyperplane H of E%*! which

1. supports the convez hull of the set of points CH(B)
2. is the translated of an hyperplane tangent to Cy.

3. s above O’ .

271

Conversely , the intersection of an hyperplane H, sat-
isfying the above three properties, with the hyperplane
Td+1 = 0 is an hyperplane of E4 supporting the convez
hull of the set of spheres CH(A)

Proof: Each hyperplane of E¢ supporting the convex
hull of the set of spheres CH(A) is the intersection with
z441 = 0 of a unique hyperplane H which supports the
convex hull of the set of cones C and is tangent to at
least one cone along a generatrix.

This means H supports the convex hull of the set of
points CH(B) and is the translated of an hyperplane
tangent to Cp.

As H supports CH(C), it is above O'.

Conversely, if H supports CH(B), it is either above or
below CH(B). So as H is above O, it is above CH(B).
As H is also the translated of an hyperplane tangent to
Co, it supports the convex hull of the set of cones CHc.
Its intersection with z4,; = 0 is an hyperplane of E¢
supporting CH(A). O

3.2 Duality

We use duality to transform the conditions of the above
theorem into simpler ones. Duality with respect to O’ is
a one-one transformation which maps points of E¢ dis-
tinct from O’ to hyperplanes of E¢ which do not contain
O'. Let My be a point of E¢ distinct from O’. The
hyperplane Ho dual to My, is defined by the following
relation:
Ho={X€E'd|Mo.X=1}

In the Dual Space:
o The dual of CH(B) is a polytope P.

o The dual of the set of hyperplanes which are the
translated of the hyperplanes tangent to Cy is a cone
U with apex O’, axis O’z 441, and angle at the apex
n/4.

o The dual of the set of hyperplanes above O’ (with
respect to the z44, axis) is the half space z44; > 0.

Proof:
First assertion: The dual of CH(B) is a polytope
P limited by the hyperplanes dual to the vertices of

CTH(B). Eveéry k-face of CH(B) corresponds to a unique

(d — k)-face of P, for 0 < k < d.

Second assertion: Let H, be an hyperplane tangent to
Co. The point dual to H2 belongs to the line L, issued
from O’ and normal to this hyperplane H,. The dual of
the set of all the hyperplanes parallel to H, is L. The
angle of H2 with the vertical axis is #/4. Therefore, L,
has an angle /4 with the vertical axis.

As H; moves around the cone Cy, staying tangent to
it, L2 moves on a cone U with apex O, axis O'z44,
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The Set of Cones C

Figure 3: Embbeding the spheres in E4+!

angle at the apex w/4. The dual of the set of all the
hyperplanes tangent to Cy and the translated of these
hyperplanes is the cone U.

Third assertion: Let H3 be an hyperplane which lies
above O’. Let M3 be the point dual to H3. M3 is on
the half line issued from O’ and normal to H3. Mj is on
the same side of O’ as H3. Thus, the dual of the set of
hyperplanes Hj is the half space 244, > 0.

]

Thus, the dual of the set of hyperplanes supporting
the convex hull of the set of points CH(B), tangent to
at least one cone of C along a generatrix and above O’
is the set

I=PnUN{z441 >0}

3.3 The Algorithm

Compute the convex hull CH(B) and take a point O’
inside this convex hull.

Compute the simple polytope dual P dual to CH(B)
with respect to O'.

Compute I, the intersection between P and the cone U .

and the half space z44; > 0.

Take the dual of I (we are back to the initial space agam)
and intersect it with the hyperplane z4,; = 0 to obtain
the convex of the set of spheres CH(A).

Proof of correctness:

The above theorem and the duality results yield: The
intersection of the hyperplane of E4+! dual to a point of
I with the hyperplane z;,; = 0 is an hyperplane of E¢
which supports the convex hull of the set of spheres A.

The boundary of the intersection of all the half spaces
limited by these supporting hyperplanes is the convex
hull of the set of spheres A.

4 Complexity Analysis

Chazelle has shown that it is possible to compute the
convex hull of a set of points in dimension d in optimal
time ©(nl%) + nlogn) (see [Cha91]). Thus, the worst-
case time needed to compute the simple polytope dual
to the convex hull of the set of points A and to intersect
it with the cone is
(nl"t‘J + nlogn) = O(nr'ﬂ + nlogn)

This is optimal in any dimension. Simpler randomized
algorithms can be found in [CS89, BDS*).

5 Extension to Homothetic Con-
vex Objects

“This algorithm generalizes to a set of homothetic con-

vex objects having the same orientations. More pre:
cisely, let us take a convex object CO of E? and let
= {CO,,...,CO,} be a set of convex objects, ob-
tained from CO by homothety and translation, of which
we want to compute the convex hull . The main point is
that the cone U with angle at the apex /4 is replaced
by a more general cone V, which is no longer circular.

Let us associate a half lower cone §(CO) of E%t! to
CO by taking an arbitrary apex ¢(CO) above the object
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side the convex object. (CO) is the half cone consisting
of the half lines issued from ¢(CO) and tangent to CO.
Now we may associate a translated cone homothetic to
6(CO) to any object homothetic to CO. As before B =
{#(CO,), ...,(CO,)} and C = {6(CO)), ...,6(CO,)}.

Arguments similar to those of section 3 can be used. If
we replace the half lower cone Cy defined in section 3 by
6(CO), Theorem 2 still holds. Condition 2 is then: The
hyperplane H is the translated of an hyperplane tangent
to CO.

The dual of the set of hyperplanes H satisfying con-
dition 2 is a general cone V with apex O’, which is no
longer circular.

The algorithm of section 3 can be used if we replace
the cone U by V.

Let k be the combinatorial complexity, i.e. the total
number of (curved) faces, of the convex object CO. We
assume that the dual of a curved face can be computed
in O(1) time so as its intersection with an hyperplane.

The complexity of the cone V is also k . To compute I
we have to intersect a polytope P of complexity O(nffl +
nlogn) with V and with the half space z44; > 0. The
worst-case time needed to compute this intersection is
O(Ic(n“'I + nlogn)). Thus, the time needed to compute
the convex hull of n convex objects of complexity k in
dimension d is O(k(n/$1 + nlogn)).

For example, if the convex objects are ellipsoids, we
have ¥ = 1. Thus, the time needed to compute the
convex hull of n homothetic ellipsoids in dimension d is
O(n'%! 4+ nlogn).
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