274

Higher Dimensional Delaunay Diagrams for Convex Distance Functions
(Extended Abstract)

Barry F. Schaudt * R.L. (Scot) Drysdale *
June 2, 1992

Abstract

We describe an algorithm to compute the Delaunay diagram of a non-degenerate set S of n sites in R using
any convex distance function. The size of a d-dimensional Delaunay diagram is O(n(4+2)/2]), The algorithm that
we present runs in time O(n/(4+1/2] 4 5 1g 1) using space O(nl(4+1)/2])

We also show that the Delaunay diagram for non-Euclidean distance functions need not be a triangulation of
the sites in S. For d > 2 the interiors of the “triangles” can intersect.

1 Introduction

Voronoi diagrams and Delaunay diagrams and their extensions have been extensively studied by computational
geometers in the last few years. A resent survey by Aurenhammer [Aur91] summarizes many of the results. In this
paper we will present an algorithm for computing the Delaunay diagram of a set of non-degenerate sites using any
convex distance function. (We will define what we mean by a set of non-degenerate sites shortly.) The only primitive
that this algorithm uses is an in-sphere test. We will also show that the Delaunay diagram computed using a convex
distance function may not be a triangulation. For d > 2 the interiors of the “triangles” can intersect.

In two dimensions, the size of the Euclidean Delaunay diagram is O(n). Guibas and Stolfi [GS85] present an
optimal O(nlgn) algorithm for computing the diagram. This algorithm is a divide and conquer algorithm that is
quite similar to the three-dimensional divide and conquer convex hull algorithm of Preparata and Hong [PHT77].

One variant of the standard Delaunay and Voronoi diagrams measures distances by a non-Euclidean distance
function. Examples of such diagrams include the L, metrics [Lee80]. If we restrict ourselves to the Ly or Lo
metrics, then there are several other algorithms known to compute the diagrams [LW80, SDT91].

Chew and Drysdale [CD85] defined a Voronoi diagram where distances are measured by using any convex distance
function. A convex distance function is defined by choosing any convex shape as the “unit circle” and any interior
point as its “center”. To measure the distance from a to b the unit circle is centered at a, and is expanded or
contracted until b lies on its boundary. The scaling factor needed to accomplish this is the distance from a to b. The
equivalent definition in d dimensions uses a d-dimensional convex shape as the unit d-sphere.

Drysdale [Dry90] gives a practical algorithm for computing the two-dimensional Delaunay diagram, from whlch
the Voronoi diagram can be computed. Drysdale’s algorithm is a generalization of Guibas and Stolfi’s two-dimensional
Delaunay triangulation algorithm.

In higher dimensions the size of the Euclidean Delaunay diagram is O(nl(4+1)/2]), For dimensions higher than
three, the d-dimensional Delaunay diagram is computed by first transforming the d-dimensional Delaunay diagram
problem to a (d + 1)-dimensional convex hull problem. The sites in d-dimensions are projected onto a paraboloid
in (d + 1)-dimensions and the convex hull of the projected sites is computed. If the sites are non-degenerate, then
the downward-facing faces on the convex hull are the faces in theé Delaunay diagram. Edelsbrunner [Ede87) discusses
this projection.

There are several methods to compute the convex hull in higher dimensions. Seidel’s algorithm as presented in
Edelsbrunner’s book [Ede87] runs in time O(nl(4+1)/2] 4 nlgn). Seidel’s algorithm is optimal for even dimensions
higher than 2. If we compute the d-dimensional Delaunay diagram by computing a (d + 1)-dimensional convex hull

*Lewis and Clark College, email: schaudt@Iclark.edu
tDartmouth College, email: scot.drysdale@dartmouth.edu

of Seidel, then we can compute the d-dimensional convex hull in time O(n(9+1)/21 4 n1gn), which is optimal in odd
dimensions higher than 5. Just as Drysdale’s two-dimensional Delaunay diagram algorithm is similar to Preparata
and Hong’s three-dimensional convex hull algorithm, the algorithm that we present in this paper to compute a
d-dimensional Delaunay diagram is similar to Seidel’s algorithm to compute a (d + 1) dimensional convex hull.

It is worth noting that Chazelle [Cha91] has an optimal convex hull algorithm in any fixed dimension.

2 Definitions and Basic Properties

If S = {z1,22,...,Zk41}, then the convex hull of S is a polytope. If the dimension of the convex hull of S is k,
then the convex hull of S is a k-simplex. In 2-dimensions, a simplex is a triangle and in 3-dimensions, a simplex is a
tetrahedron. In d-dimensions, the (d — 1)-faces of a simplex are called facets. We will refer to a d-simplex as a cell.

If f is a k-simplex, then simplex(f, v;,v,,...,v;) will denote the simplex of the k + 1 vertices of f and the sites
V1,V2,...,%.

We will now define non-degeneracy conditions which will insure that each k-face in the Delaunay diagram is a
simplex composed of k + 1 vertices. The standard definition of non-degeneracy in the Euclidean Delaunay diagram
states that no d + 2 sites are cospherical. This implies that the set of points equidistant from k + 1 sites is a d — k
flat. A k-flat can be defined as the intersection of d — k hyperplanes whose normal vectors are linearly independent
[Ede87]. We need a similar definition for convex distance functions.

Definition 2.1 A set of sites in R? is nondegenerate if and only if
(1) For any two siles py and ps, {z|d(p1,z) = d(p2,)} divides R?® into two sets, where each set is connected,
unbounded and has dimension d. Furthermore, the set of points equidistant from p, and p, has dimension d— 1.
(2) For any k+1 sites py, . .., pr41, {2]d(p1,z) = d(p2,2) = ... = d(pr+1,2)} divides {z|d(p1,2z) = ... = d(ps,)}
into two sels, where each set is connected, unbounded and has dimension d — k. Furthermore, the set of points
equidistant from py,pa,...,Pk4+1 has dimension d — k + 1.

The definition of non-degeneracy implies that no d + 2 sites are cospherical (the sphere defined by our choice of
convex distance function). In cases where the unit sphere has a flat side, this also implies that no two points lie on a
line parallel to that flat side. (In the Lo, metric, this means that no two points can have the same value for the j**
coordinate.) We conjecture that the usual definition of non-degeneracy — no d + 2 sites are cospherical and no two
sites lie on a line parallel to a flat side of the unit sphere - implies our definition of non-degeneracy. This conjecture
is true for the Lo, metric and is also true for any convex polytope distance function. We also note that if a set of
sites fails to satisfy these conditions that a small perturbation of the sites will be non-degenerate.

Among other things needed for the proof of correctness of our algorithm, this definition of non-degeneracy implies
that the set of all points equidistant from d sites is a one-dimensional curve. The d sites define a family of spheres,
where each sphere touches all of the sites. Each sphere in this family has its center on the curve. There are two infinite
spheres associated with this family. In the Euclidean metric, the infinite spheres are halfspaces and the interiors of
the infinite spheres do not intersect. For convex distance functions, the infinite spheres may not be halfspaces and
their interiors may intersect. See Figure 1. Our in-sphere primitive also determines which infinite sphere a site is in.

With the Euclidean metric, the Delaunay diagram of a set of sites where no d + 2 of these sites are cospherical
is a triangulation of the interior and boundary of the convex hull of these sites. One of the properties that any
triangulation must satisfy is that the interior of two simplicies must not intersect. For a formal definition of a
triangulation, see Rothschild and Strauss [RS85). -

Unfortunately, once we leave the Euclidean metric, the Delaunay diagram may not be a triangulation. It is
possible to construct examples where the interiors of the simplicies intersect. An example of intersecting Delaunay
simplicies is shown in Figure 2 for a-3-dimensional Delaumay diagram-using tire L3, metric. The Euclidean Delaunay
diagram is a triangulation because the intersection of two hyperspheres lies in a hyperplane.

Even though the interiors of the simplicies may intersect each facet of the Delaunay diagram is incident on exactly
two cells and we can still compute the Delaunay diagram with a simple algorithm. The fact that we do not have a
triangulation complicates only the proof of correctness.

275

276

Figure 1: In the Lo, metric, the infinite circles with sites p; and p, on the boundary are shown. The intersection of
the interiors of the two infinite circles is non-empty. If ¢ is a site in the intersection of the interiors of the two infinite
circles, then there is no circumcircle of ¢, p;, and pz. Also, g is in all circles with p; and p; on the boundary. That
is, all circumcircles of p; and p; contain q.

back: z = 80 .
right: y = 30)\‘y
F 4
r top: z = 100
"""" v L (T As
rd M 7
bottom: = ?0/ / e right: y = 100
b, o
bottom: z =0

front: z = 100

Figure 2: The interiors of two Delaunay simplicies may intersect. An example of this is shown in 3-dimensions
using the Lo, metric. Here, the interiors of tetrahedrons ABCD and EFGH intersect. The sites that determine
the right cube are A(100, 32,59), B(99,31,100),C(98,0,58) and D(0,90, 10). The sites that determine the left cube
are E(101,29,60), F(102,30;101), G(80,28;102) and f/(179,"—60,166). In this figure, -the cubes are pulled apart for
illustrative purposes. On the right, we see a view of just the shaded triangle ABC and the unshaded triangle EFG.
Sites A and B are the lower and upper points on the shaded triangle respectively.

3 The Algorithm

Our d-dimensional Delaunay diagram algorithm is a generalization of Guibas and Stolfi’s incremental Delaunay
triangulation algorithms. Each point to be inserted will be located in the cell or cells that contain it. Then we will
determine which old cells are eliminated due to this point, and which faces are connected to the new point to form
new cells. The algorithm is quite similar to Seidel’s convex hull algorithm as presented by Edelsbrunner [Ede87].

We will assume that our sites lie inside some convex polytope whose vertices V are part of the set S and that
we already have computed the Delaunay diagram of the sites on this convex polytope. We will insert new points in
lexicographical order, so that any cell containing a new point must have a vertex in V.

Before we present the incremental algorithm, we need a theorem that tells what faces we must change when a new
site is inserted. The notation simplex(e, p), where e is a k simplex and p is a point, denotes the simplex constructed
from p and the vertices of e. We call this process “connecting p to the k-simplex e.”

Theorem 3.1 Suppose D is a Delaunay diagram of S, where S is a subset of S— V,and pisa sitein S—-S—V.
If DV is the Delaunay diagram of the sites SU {p} UV, then each face of D' is one of the following types.

(i) a face f of D is also a face of D' if and only if there ezists a cell F of D such that f C F and p is
not in the circumsphere of F.

(ii) if f is a face of D, then simplez(f,p) is a face of D' if and only if among the cells of D containing f
there is at least one cell with p is in ils circumsphere and at least one cell with p not in its circumsphere.

Proof: Omitted §

The data structure that we will use is the incidence graph. The incidence graph consists of d + 3 doubly linked
lists I_q,Io, I1,...,I441. The list I; contains the k-faces . The list I_; always consists of a single node, @, and this
node is considered a subface of each entry in Ip, that is, each vertex. Likewise, 144, consists of a single node and is
a superface of each entry in I;. An entry e of I; contains in addition to the pointers needed to maintain the doubly
linked list a pointer to each superface that it is incident to and a pointer to each subface that it is incident to. We
will also keep a list of cells that contain a vertex from V.

In addition to the pointers we will also need a mark field for each entry in I. A mark is one of the following:
“unmarked”, “to be deleted”, “to be connected to p”, or “not to be deleted”. The only faces that are marked “not
to be deleted”. are cells.

We will also need another data structure, L, that will contain nodes that we have marked. This data structure
will consist of d + 2 doubly linked lists L_1, Lo, L1, ..., L4g. Each list L; is a list of the k-faces in I} that we have
looked at.

To add a new site p to a Delaunay diagram, the algorithm proceeds in two phases: a mark phase and an update
phase. The update phase will just perform all the updates indicated by the mark phase.

The mark phase has two parts. We can informally think of the first part in terms of spheres being pushed through
facets of the Delaunay cells. We start with a cell that contains p and make one copy of the circumsphere of this cell
for each facet of the cell. We push each copy of the circumsphere through a different facet. Each of these spheres
will change shape while remaining in contact with all d points of its facet. We continue pushing the sphere until it
contacts another point and becomes a circumsphere of some adjacent cell. If this circumsphere contains p and if it
has not already been considered, then we mark the cell of the circumsphere for deletion and repeat this process for
each facet of the cell. The cells are marked by doing a depth first search.

The next part of the mark phase will then mark all the k-faces, k < d—1, of the cells that the first part considered.
They will be marked "to be deleted”, or “to be connected to p” as specified by Theorem 3.1. The mark phase of the
algorithm is outlined in Figure 3.

In order to find the cells that contain the new site, our algorithm considers the sites in lexicographica.l order.
This means that the new site is outside the conyex..lmll of the previous sites and the.new site is in a circumsphere of
a cell that has at least one vertex in V.

The second phase of the algorithm will perform all the necessary updates to the data structure I. The update
phase is outlined in Figure 4. The update phase looks at each face f in L, which contains the marked faces, starting
with the faces in L_;. Only when all the faces in L; are updated, will the faces in Ly4; be updated.

Note that this algorithm is a higher dimensional flip algorithm. All the facets that will be flipped are marked in
the first phase and flipped in the second phase.

277

278

Part 1.
Find all the cells that contain contain p by searching through all cells that have a site in V as a vertex.
for each cell that contains p do DFS(C).

Part 2.
At this point all cells that must be deleted and cells that are adjacent to a cell that must be deleted are marked. We must now mark all
faces incident to cells that we have looked at.
for i := d-2 downto -1 do
for each face f in L;4; do
for each subface e of f do
if e is ummarked then Add e to L;; Mark(e) = mark(f)
if f is marked “to be connected to p” then Mark(e) = mark(f)
DFS(C)
Add cell C to list Lgy.
if p is in the circumsphere of C then Mark C to be deleted
else Mark C not to be deleted.
if p is in the circumsphere of C then
for each (d — 1)-face, ¢, of cell C do
Let C, be the other cell incident upon e.
if we have not already looked at C, then DFS(Ca,)
if e is unmarked then
Add e to list Ly_y
if e is adjacent to two cells whose spheres contain p then Mark e for deletion.
if e is adjacent to one cell whose sphere contains p and one cell whose circumsphere does not contain p, then Mark e to
be connected to p

Figure 3: The mark phase of the algorithm.

4 Correctness, Complexity and Run Time

The proof of correctness of the algorithm is similar to the proof of correctness for Guibas and Stolfi two-dimensional
Delaunay diagram algorithm [GS85]. We define the equivalent of an inCircle test and then show that we only need
to apply the test locally.

Definition 4.1 Let f be a facet incident 1o cells Cy and Ca, with Cy = simplez(f,X) and C; = simplez(f,Y) we
will say f passes the sphere test if and only if.

1. The circumsphere of simplex(f, X) erists and does not contain Y and

2. The circumsphere of simplez(f,Y) ezists and does not contain X.

Note that if the circumsphere of simplex(f, X') does not exist, then there are no empty circumspheres of f. Again,
see Figure 1. '

Lemma 4.2 A diagram is Delaunay if and only if all its facets pass the sphere test.

Proof: Omitted. |

In order to prove the runtime of the algorithm we need the following.
Theorem 4.3 The worst case size of the Delaunay diagram is 6(nl(4+1)/2]),
Proof: Omitted. |
Theorem 4.4 The algorithm runs in time O(nl(4+2)/2] 4 nlogn) using O(al(4+1)/2]) space.

.+ Proof: This proof is similar to the proof of the runtime of Seidel’s convex hull algorithm as presented by Edels-
brunner [Ede87).

for i := -1 tod do

for each face f in list L; do

if f is marked to be deleted then
Delete face f and all pointers from f to superfaces and to subfaces in I
if f is a cell and f has a site in V as a vertex then
remove f from the list of cells that have a site in V as a vertex.
else if f is marked to be connected to p then
Create a new face, simplex(f,p) in ;41
" if simplex(f,p) is a cell and f has a site in V as a vertex then
Add simplex(f,p) to the list of cells that have a site in V as a vertex.
Make f a subface of simplex(f,p) in I
Make simplex(f,p) a superface of f in I
for each subface e of f do
Make simplex(e,p) a subface of simplex(f,p) in I
Make simplex(f,p) a superface of simplex(e,p) in I

Free all nodes in L.

Figure 4: The update phase of the algorithm.

5 Open Problems

The first open problem that we would like to see proved is our non-degeneracy conjecture: the usual definition of
non-degeneracy is equivalent to our definition.

Second, our Delaunay diagram algorithm is closely resembles Seidel’s convex hull algorithm. Perhaps, Chazelle’s
new optimal convex hull algorithm [Cha91] can be used to design an optimal Delaunay diagram for convex distance

functions.

References

[Aur91] F. Aurenhammer. Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Computing
Surveys, 23:345-405, 1991.

[CD85] L.P. Chew and R.L. Drysdale. Voronoi diagrams based on convex distance functions. Proceedings of the
First Annual Symposium on Computational Geometry, pages 235-244, 1985.

[Cha91] Bernard Chazelle. An optimal convex hull algorithm and new results on cuttings. 32rnd Symposium on
Foundations of Computer Science, pages 29-38, 1991.

[Dry90] R.L. Drysdale. A practical algorithm for computing the Delaunay triangulation for convex distance func-
tions. Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, pages 159-168,
1990.

[Ede87] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, 1987.

[GS85] Leonidas Guibas and Jorge Stolfi. Primitives for the manipulation of general subdivisions and the compu-
tation of Voronoi diagrams. ACM Transactions on Graphics, 4:74-123, 1985.

[Lee80] D.T. Lee. Two-dimensional Voronoi diagram in the L, metric. Journal of the ACM, 27:604-618, 1980.

[LW80] D.T. Lee and C.K. Wong. Voronoi diagrams in L;(Lc) metrics with two-dimensional storage applications.
SIAM Journal of Computing, 9:200-211, 1980.

[PH77] F.P. Preparata and J.S. Hong. ‘Convex-hulls of finitesetsof points imtwo and three dimensions. Commu-

. nications of the ACM, 20:87-93, 1977.
[RS85] B.L. RothSchild and E.G. Straus. On triangulations of the convex hull of n points. Combinatorica, 5:167-

179, 1985.

[SDT91] Gary M. Shute, Linda L. Deneen, and Clark D. Thomborson. An O(nlgn) plane-sweep algorithm for L,

and Lo, Delaunay triangulations. Algorithmica, 6:207-221, 1991.

279

