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Abstract

Given a polyhedral terrain S with n vertices, the shortest watchtower problem is
defined to compute the shortest vertical line segment uv whose lower endpoint u lies
on S and whose upper endpoint v can see the entire terrain. Sharir [Sha88] gave an
O(nlog*n) time algorithm for solving the problem and posed the open problem of
computing the shortest watchtower in O(nlogn) time. In this paper, we show that by
using Dobkin-Kirkpatrick’s hierarchical representation of a convex polyhedron, the
problem can be solved in O(nlogn) time. This settles the above open problem posed
by Sharir. For the generalized version of the problem, i.e., computing the shortest
vertical distance between two non-convex polyhedral terrains, we give an O(nlogn+k)
time algorithm. Though k could be O(n?), in some cases it will bring the total time
complexity down to O(nlogn).

1 Introduction

A polyhedral terrain is a 3-d polyhedral surface such that for each point v = (z,9,2)
on the surface, z = f(z,y) for some linear function f. In other words, any vertical line
intersects with the terrain at most once. Polyhedral terrains are widely used in computer
graphics, computer vision and geography. Some research regarding polyhedral terrain has
been done in recent years [Sha88], [CS89].

Sharir [Sha88] posed the problem of computing the shortest watchtower of a given
terrain, that is, a shortest vertical line segment which can see every point on the surface.
He gave an O(nlog®n) algorithm, where n is the number of vertices of the terrain, for
solving the problem.- He-also posed the problem of computing the shortest watchtower
in O(nlogn) time and made the conjecture that the fractional cascading [CG86) or the
hierarchical representation [DK85] technique might give us the solution.

It turns out that we can solve the problem in O(nlogn) time by using Dobkin-
Kirkpatrick’s hierarchical representation of a convex polyhedron. In Section 2, we will



give the detail of our algorithm. In Section 3, we will discuss the generalized problem
of computing the shortest vertical distance between 2 non-intersecting terrains. We will
pose a set of closely related open problems for future research in Section 4.

2 Algorithm for the shortest watchtower problem

As pointed in [Sha88], let fi, ..., f, be the planar faces of §, and let 73, ..., 7, be the planes
containing these faces, a point v can see the entire of S if and only if it lies above every
m;. It turn out that this is an unbounded convex polyhedral terrain and can be com-
puted in O(nlogn) time (we denote it as L). Now the problem is reduced to computing
the shortest vertical distance between a polyhedral terrain § with n faces and another
convex polyhedral terrain L with n faces lying above S. It is easy to see that the short-
est vertical line segment uv, with u € S, v € L must satisfy one of the following properties:

(1) v is a vertex of L;
(2) u is a vertex of §;
(3) u lies on an edge of S and v lies on an edge of L.

As shown in [Sha88], the first two cases can be easily done in a total of O(nlogn)
time by applying the planar subdivision method [Kir83]. For the third case, Sharir gave
an O(log?n) time algorithm for computing the shortest distance between an arbitrary
line segment and L. We will improve this bound to O(logn), thus improving the overall
bound to O(nlogn). Before we proceed, we make the following definitions. Given two line

' segments s; and sz in 3-d, if there is a vertical line ! such that s; NI # @, s, N1 # 0, then
the vertical distance between s; and s; is the difference between the z-cordinate of sinl
and s; N 1. Otherwise the vertical distance between the two segments is infinity.

Let e = ab be an edge of S. For 0 < t < 1 define
ut)=(1-t)a+thee,
and v(t) is the point on L lying directly above u(t). Let
FE(2) = |u(t)o(2)).
We have the following crucial property:
Observation 1: FL(t)is a piecewise linear convex function.
Now we give a brief description of Dobkin-Kirkpatrick’s hierarchical representation of

a convex polyhedron. Let P be a polyhedron in 3-d with vertex set V(P), edge set E(P)
(IV(P)I,|E(P)| € O(n)). A sequence of polyhedra, H (P) = B,..., P, is said to be a
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hierarchical representation of P if

(i) A = P and P, is a 3-simplex (i.e, a convex polyhedron whose size is constant);

(ii) Pig1 C P;,for 1 < i < k;

(iii) V(Pi41) C V(£); and

(iv) the vertices of V(P;) — V(P;41) form an independent set (i.e., are non-adjacent)
in P;.

Furthermore, as shown in [DK85], there exist constant ¢ = 11 such that for a polyhe-
dron P in 3 dimensions there exists a hierarchical representation (which can be constructed
in O(n) time) of degree at most ¢, O(logn) height, and O(n) size. This immediately im-
plies:

Observation 2: There are at most 11 edges of P; intersecting any supporting plane of
Piya; :

Suppose we already have the hierarchical representation Py, ..., Piy1, P;, ..., Pi(P; = P)
for P. We also assume that for P; the minimum vertical distance between P, and an arbi-
trary line segment ab is denoted as min(ab, P;) = the minimum vertical distance between
Ea.ndfﬂ) over all j € P;.

Lemma 1: Assume for P;y,, the function F7 *!(t) achieves the minimum at the edge 7y
of Fiy1, then min(ab, P;) is equal to either min(ab, P;;,) or the minimum vertical distance
between ab and 57 such that p € V(P;) — V(Pit1), ¢ € V(Pit1), 57 € E(P;) — E(Piys)
and pz,py € E(Pt) - E(Pl'+1)’ if such P, g exists.

Proof: Note that we have two important properties here: first the distance function
Fhn (t) is convex; second, for Py, if we add a vertex p' € V(P;) — V(Piy1), the re-
sulting polyhedron is still convex (adding all these vertices gives us P;). Now we prove
Lemma 1 by contradiction.

Suppose our claim is false, that is, min(ab, P;) < min(ab, Pi4;) and it achieves the
minimum at p'q’ € E(P;) — E(Piy1) such that p' € V(P) — V(Piy1) and ¢’ € V(Piy1)
and at least one of p'z and p'y ¢ E(P;) — E(P;41). We just consider the case when both
p'z and p'y & E(P,) — E(Pi41), the other two cases are similar.

Suppose we add only p' (and the corresponding edges adjacent to it) to P;4,, according
to the above discussion, the resulting polyhedron P’ is still convex. Since we only add p’
to P41 and p’ is not incident to either z or ¥, all the edges incident to z or y € E(P;41)
are also edges in E(P’). Consider the distance function between e = ab and P', it is
easy to see it will have two local minimum, the vertical distance between ab and Zy (this
is min(ab, P,4,), since none of the neighbor'edges of Ty is changed this keeps as a local
minimum for the distance function F¥ (¢)) and the vertical distance between @b and p'q’



(this is the global minimum by assumption). But this will contradict with the fact that
the distance function between a line segment and a convex polyhedron is always convex.
a

Lemma 2: If min(ab, P,4) is known, to compute min(ab, P;), we need only to go from
P41 to P; and check at most 22 edges in E(P;)— E(P;41). Furthermore, this can be done
in constant time.

Proof: The first part of Lemma 2 follows immediately from Observation 2 and Lemma 1.
The only thing we need to rectify is how to find such p € V(PB;) — V(Piy1) (at most two
" such p) and search ¢ € V(P;4;) (at most 22) such that g € E(P;) — E(Pi41) in constant
time. We can clarify this when we compute the hierarchical representation of P (without
increasing the overall time and space bound for computing the hierarchical representation
of P). When we delete r € V(P;) to get Piy,, we retriangulate (actually computing the
convex hull) of the "hole” formed by the deletion of r. For each newly created edge and
the boundary edges of the "hole”, we assign a parent node (r,{) with it. Note that in this
process, no edge can have more than two level-i parent nodes (boundary edge of the hole
could have 2). Then when we have Zj € E(P;4;), we can find its level-i parent nodes
in V(F;) = V(Piy1) in O(1) time. From these parent nodes (at most 2), we can list the
edges (at most 22) incident to them in E(P;) in constant time (a DCEL representation
of convex polyhedron supports this operation). Then we simply find the shortest vertical
distance between these edges and ab. This is min(ab, P;). O

Lemma 1 and 2 enable us to compute the shortest vertical distance between e = ab
and P in O(logn) time. We simply start from Pj, each time test at most 22 candidates
and keep the current minimum until to get P, = P, at this stage we have min(ab, P,),
which is the solution. The detailed algorithm is trivial and omitted. Now we have the
main result of this paper,

Theorem 3: There is an algorithm which computes the shortest watchtower of a poly-
hedral terrain with n vertices in O(nlogn) time.

3 Compute the shortest vertical distance between 2 non-
intersecting polyhedral terrains

As pointed out by Sharir, the obvious generalization is to compute the shortest vertical
distance between two arbitrary, non-intersecting polyhedra terrains. Using a technique
called generalized point location, Chazelle and Sharir obtained an O(n!-99%878) algorithm
for the problem, which beat the trivial O(n?) time bound [CS90]. We give an O(nlogn +k)
time algorithm, where k is the number of intersections of the projections of the edges of
the two terrains.
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Let R and S be two non-intersecting polyhedral terrains. As shown in Section 2, there
are 3 cases for the shortest vertical distance between them. Again we only consider the
third case. We use E(R), E(S) to denote the set of edges of R and S respectively. We
define a bipartite weighted graph G as follows, V(G) = E(R)U E(S), and there is an edge
between two segments sp € E(R),ss € E(S) if and only if their vertical distance is not
infinity (if we project the two segments on the XY-plane, they must have an intersection).
The weight of such an edge is the vertical distance between them. Note that we can
construct G in O(nlogn + k) time by running Chazelle-Edelsbrunner’s algorithm [CESS]
(The detail is again omitted). Then we can simple find the edge with the minimum weight
in O(k) time (there are k edges in G).

Theorem 4: The shortest vertical distance between two nonintersecting terrains can be
computed in O(nlogn + k) time.

Although k could be O(n?), under some circumstances (the expected value of the
length of n line segments under uniform distribution is O(V/Togn/n)), the expected value
of k will be O(nlogn), as shown in a recent paper by Devroye and Zhu [DZ92]. Interested
readers should refer to [DZ92] for details.

4 Concluding Remarks

We list some closely related problems for future research as follows:

(1) Can fractional cascading be used to solve the shortest watchtower problem?

(2) What is the lower bound of computing the shortest watchtower of a polyhedral
terrain? Does the information that L is a special convex polyhedron help improving the
O(nlogn) upper bound?

(3) For the general problem we consider in Section 3, is it possible to get a faster
algorithm? Note that in 2-d, we can find the shortest vertical distance between 2 non-
intersecting monotone chain in ©(n) time.
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