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Abstract

We use the technique of divide-and-conquer to construct a minimal rectilinear Steiner tree
on a set of sites in the plane. A well-known optimal algorithm for this problem by Dreyfus and
Wagner [3] is used to solve the problem in the base case. The run time is probabilistic in nature:
for all € > 0, there exists b > 0 such that Prob (T(n) < 2°V™198%) 5 1 — ¢, for n sites uniformly
distributed on a rectangle. The key fact in the run-time argument is the existence of probable
bounds on the number of edges of an optimal tree crossing our subdivision lines. We can test
these bounds in low-degree polynomial time for any given set of sites.

1 Introduction

Steiner’s Problem is this: given a set V of points, called sites, in the Euclidean plane, find a set S of
points, called Steiner points, and a set E of edges on V' |JS such that E forms a tree on V|JS and
the sum of the lengths of the edges in E is minimal. In this paper we focus on the rectilinear variant,
where the distance between two points (z1,y;) and (z3,y2) is given by d = |z; — 23| + |y1 — 12|- In
the resulting Rectilinear Steiner Problem, edges are constrained to consist of vertical and horizontal
segments only, and we again seek a tree of minimal length. We call such trees rectilinear Steiner
minimal trees, or RSMTs for short. This problem is NP-complete [4]. Most research has thus focused
on heuristic algorithms, sometimes with performance guarantees (e.g. [1]).

Two important theoretical results form the basis for our algorithm. Hanan [5] proves that the
grid graph formed by drawing horizontal and vertical line segments through the sites always contains
a minimal rectilinear Steiner tree. By restricting consideration to this grid graph, we can greatly
reduce the search space for the problem. The second theoretical result is due to Hwang [6], who
showed how every RSMT can be transformed into an equivalent tree in a canonical form. Such a
canonical tree can be found in Hanan’s grid graph. Moreover, any maximal line segment made up
of edges in a canonical tree contains at least one site.

In this paper we use the technique of divide-and-conquer to construct an RSMT on a set of sites
that is uniformly distributed in a rectangle.. In Section 2 we describe our probably fast, provably

optimal algorithm. This work is an extension of an earlier provably fast, probably optimal algorithm

(8]. In this new algorithm the possible crossings of an optimal Steiner tree across the dividing line
must be exhaustively searched. In Section 3 we are able to compute a probable bound on the size
of the crossing set, which is used in restricting the search. In Section 4 the run time T is shown to
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be probabilistic in nature: for all € > 0, there exists b > 0 such that
P(T < 22VPlogny 5 1 .

Informally, the run time is 20(‘/;"’3"_) with probability 1—e¢, where the big-Oh constant is dependent
upon ¢. The fastest previously-published optimal algorithm runs in time O(n23") [3]. Conclusions
are given in Section 5.

2 An Optimal Divide-and-Conquer Algorithm

In this section we describe our basic divide-and-conquer algorithm. We assume that the set of sites
is uniformly distributed in a rectangle R with sides parallel to the coordinate axes. We will divide
R into two subrectangles R; and R; by a line segments ! perpendicular to R’s longest dimension,
say z, through the site p with median s-coordinate. This placement of / ensures that the sites in R,
and R, are uniformly distributed (2, page 18].

Our problem here is to generate a set of rectilinear Steiner trees on the sites containing at least
one RSMT and to choose the shortest. Figure 1 shows a subdivided RSMT.
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Figure 1: An optimal rectilinear Steiner tree subdivided.

The tree crosses [ in two points, , and t,, called terminals. When we remove the points along [,
the Steiner tree falls apart into a forest, with one subtree in R; and two in R,. The horizontal edges
through ¢, and ¢; connect subtrees across I, while the edge #;p connects p to the rest of the tree.
In searching for solutions, therefore, we must consider all possible sets C of terminals along ! and
all possible sets E of edges along I. We can restrict the locations of the terminals to points where [
crosses Hanan’s grid graph. We must ensure that the two solutions will fit together to form a tree.
For example, if a solution on R; connects t; and ¢, , then an optimal solution on R; will not connect
t; and t; since it would form a cycle. Similarly, if R, does not connect ¢; and t3, then R, must
connect them. Thus, for each subproblem we provide information about connections external to the
subproblem by representing external connections as an equivalence relation on the set of terminals.

In the more general subproblem that occurs after multiple subdivisions, we can have terminals
around the entire boundary of R; we treat this set as vertices of a planar graph G consisting of a
rectilinear Steiner tree on a set of sites minus the interior of R. The components of G determine an
equivalence relation on T': two points in T are equivalent if and only if they lie in the same component
of G. Extending terminology from the graph theory literature, we call this an outerplanar equivalence
relation. In Figure 2 we designate the equivalence relation on T by labels on the terminals: two
terminals with the same label belong to the same equivalence class. To solve this general subproblem
we again divide R in half with a line segment [ through midpoint p. We let C be the set of all points
on [ that might serve as terminals for the subproblems. C includes the intersections of ! with all
perpendicular bisectors from sites in S to l. These are naturally a part of Hanan’s grid and include
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all sites on R()!. Any other edge in a canonical solution to the problem on R that passes through [
must pass through a site outside of R [6]. Since sites outside of R connect up to the solution inside
R through the terminals in T', the other points in C are the intersections of ! with all perpendicular
bisectors from terminals in T. See Figure 2.
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Figure 2: Subdividing the general subproblem.

 What is the subproblem to be solved on R;? The terminals for the subproblem consist of the set
Ty |JC, where T; is the set of terminals in T lying to the left of / and C is the subset of C currently
under consideration. C must always be chosen to contain p and any other sites on R()I. We will
show in Section 3 that |C| < mazC(R), where mazC(R) is a value that is easily computed from
the coordinates of the sites in R. This restriction will yield a probabilistic improvement to the run
time while maintaining the optimality of the result. The sites for the subproblem are those in the
set Sy of sites in S lying to the left of . An equivalence relation on T; |JC is partially determined
by the equivalence relation on T that is inherited by T} and by the set of edges E on C, but this is
not enough to ensure uniqueness. In fact, we must iterate over all outerplanar equivalence relations
on T |JC that are consistent with the equivalence relation on T and the edge set E. For a given
choice of C, E, and eq;, the solution we seek for the R, subproblem is a minimal-length rectilinear
Steiner tree ST} on S; |JT1|JC assuming that terminals in the same equivalence class of eq; are
connected by edges of length zero.

What is the subproblem to be solved on R2? Let S; be the sites in S to the right of l and T3 be the
terminals in T to the right of . For a given choice of C, E, and eq;, we have found a solution ST} to
the left subproblem. This solution, together with the equivalence relation on T' uniquely determines
an equivalence relation egz on T3|JC. Thus, we seek a minimal-length rectilinear Steiner tree ST
on S3|JT3JC assuming that terminals in the same equivalence class of eg; are connected by edges
of length zero.

We now paste together the solutions ST and ST, for the two subproblems to get a solution,
ST, USTz U E, to the subproblem for R. After iterating over all subsets C of C with |C| < mazC(R)
and containing all sites on R()!/, all edge sets E on C, and all allowable equivalence relations eq;
on T |JC, we choose the shortest solution for R.

The solution in the base case will be provided by Dreyfus and Wagner’s O(n23") algorithm [3].
In this case the algorithm is run on Hanan’s grid graph on T'|J S with equivalent terminals connected
by edges of length zero. The base case is reached when the number of sites in a subproblem drops
below 2¢/n.

3 Improving the Run Time of the Algorithm

In this section we describe Hwang’s [6] canonical form for RSMTs, and we use it to derive a bound
mazC(R) on the number of edges in a canonical RSMT that cross a line that divides a rectangle



R into two subrectangles. This bound depends on the number of sites in a strip to one side or the
other of the line. Then we compute probabilities that mazC(R) exceeds a given value, using the
distribution of the number of sites within the strip.

For an RSMT T on a set of sites P, a Hwang component of T is a maximal connected subset
C C T such that there are no sites in the interior of C. We can obtain the Hwang components of T
as the closures of the connected components of the forest T'\ P.

In an RSMT a line is a straight line segment contained within a single Hwang component. An
edge is a portion of a line with no interior Steiner points that is terminated at each end at a site,
a Steiner point, or a corner. An equivalence operation on a RSMT consists of either flipping a
corner or sliding an edge that connects parallel lines in the RSMT. It may happen that a sequence of
equivalence operations on a component C results in splitting C in two. If this is possible, we say that
C is reducible; otherwise C is irreducible. The characterization of irreducible Hwang components
is a central part of Hwang’s work [6]. There it is shown that each such tree is equivalent to one in
which all but possibly one of the Steiner points lie on a straight line that contains one of the sites.
The one exceptional Steiner point joins to one end of the line of Steiner points through a corner.
The edges attached to any line alternate sides. We may paraphrase Hwang’s result as follows:

Lemma 3.1 Every rectilinear Steiner minimal tree is equivalent to a canonical tree, which can be
decomposed into lines, each terminating at a site. Within a Hwang component, the edges attached
to a line alternate sides.

To bound the number of edges in a canonical RSMT that cross a vertical or horizontal line
segment, we will need the following lemma.

Lemma 3.2 Let T be a canonical RSMT on a set of sites. Let U be a rectangle such that no edges
of T lie along the boundaries of U. We can associate edges e entering the right side of U with

‘edge-disjoint paths P(e) in T. A given path passes through the top, bottom, or lefi side of U, or it

terminates at a site in U. At most one path passes through the top (bottom) of U. At most three
paths terminate at the same site.

Proof Sketch: The proof is constructive. We use the edge-alternation property of Hwang compo-
nents to match edges to nearly-unique sites. The top and bottom limits are argued by contradiction
of the optimality of T'.

The following lemma can be used to bound the number of edges in a canonical RSMT that cross
a vertical or horizontal line segment.

Lemma 3.3 Let T be a canonical RSMT on a set of sites. Let U be a rectangle with width w and
height h such that no edges of T lie along the boundaries of U. If v is the number of sites in U and
e is the number of edges of T that pass through the right side of U, then e < 3v + % + 4.

Proof Sketch: We construct a graph G connecting all sites and terminals of T. We bound L(G),
the length of G, with L(T") < L(G) < L(T) + 2h + 4w + 3vw — ew.
We are now ready to determine the bound mazC(R) on the crossing edges for a rectangle R

Theorem 3.4 Let R be a rectangle containing n' sites that arises as a subproblem in the computation
of a RSMT on a set of sites S. Let h be the height of R, and let | be the length of R. Without loss
of generality we may suppose that !l > h. Let p be the site in R with median z-coordinate and let L
be the vertical line segment through p, terminated at the top and bottom boundary of R. Let v be the
number of sites to the left of L within distance h/v/n’. Let T be a canonical RSMT on S. Then the
number of edges of T that cross L from either side is no more than mazC(R) = 6v + 4v/n’ + 11.

Proof Sketch: We construct two overlapping h x h/v/n’ rectangles to bound the number of edges
entering the left (right) side of L.

We note that the values of mazC(R) at the various levels of the algorithm do not depend on
anything but the rectangles and the distribution of sites. Thus we can precompute all of the mazCs.
Also, nncethebuecueoftherecumonoccurswhenu < 24/n, there are at most \/n values of
mazC to be computed.
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Theorem 3.5 Let S be a set of n sites uniformly distributed in a rectangle. Suppose the rectangle
is partitioned into subrectangles for the divide-and-conquer algorithm. Then for any € > 0, there is
a number a(¢) such that the probability is less than ¢ that the value of mazC(R) ezceeds a(e)v/n’ for
at least one subrectangle R with n’ sites. Here, a(¢) does not depend on n.

Proof Sketch: We bound the number of points in the h x h/v/n’ rectangles of Theorem 3.4.

4 Run-Time Analysis

We let T(n) be the total run time required for ProbTree to find a minimal length Steiner tree on
a set of sites S with probability 1 — ¢, where n = |S|. We will assume throughout the remainder
of this section that the bound in Theorem 3.4 is satisfied. The proofs are omitted due to length
constraints.

The following lemma gives a useful decomposition of T(n). For this decomposition we define
Tym(n) to be the portion of the computation time T'(n) spent excluding the calls to Dreyfus and
Wagner’s algorithm, while Tpw(n) defines the computation time spent in Dreyfus and Wagner’s
algorithm.

Lemma 4.1 T(n) = Tp(n) + Tpw (n) and Tayr(n) = o(Tpw(n)).
Corollary 4.2 T(n) = O(Tpw(n)).

Corollary 4.2 has reduced our task to that of counting the number of calls to the Dreyfus and
Wagner algorithm. The first lemma gives a bound on the number of subsets C' that must be
considered.

Lemma 4.3 Let C be a set with ¢ > 1 elements. The number of subsets of C having k or fewer
elements is bounded above by (c + 1)%/k!.

The next lemma gives a bound on the number of outerplanar equivalence relations that must be
considered.

Lemma 4.4 Let R be a rectangle and T be a set of t terminals on the boundary of R. Then the
number of outerplanar equivalence relations Cy on T is bounded above by 4°.

Proof Idea: We show that C, is the t** Catalan number as defined by Knuth in [7], which is
bounded by 4°.

Now we let N(n;,t;) be the number of calls made to the Dreyfus and Wagner algorithm by our
algorithm in the process of solving a subproblem at level i with at most n; sites and at most ¢;
terminals. Because the stopping condition for the recursion is ny < 2/m, then N(n;,¢;) depends
implicitly on n. Moreover, t; can be bounded in terms of the mazCs of Theorem 3.4. The next
lemma gives us a recurrence relation on N(n;,t;).

Lemma 4.5 If mazC(R) < a/n; for all subrectangles R encountered at level i of the recursion,

then
N(ni, t:) < (ni + ti + 1)2VS48+VRN (ngy) 1),

Next we use the recurrence relation to get a bound on N(n,0).
Lemma 4.6 There ezists B > 0 depending upon a such that
N(n,0) < 2BVrlogn,
Combining Theorem 3.5, Lemma 4.6 and Corollary 4.2, we now have the final result.
Theorem 4.7 For all € > 0 there ezists b > 0 such that
Prob(T(n) < 22V*16m) 5 1 —¢.
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5 Conclusions

We have described an optimal algorithm for rectilinear Steiner tree minimization that, with prob-
ability 1 — ¢ for € > 0, has a lower asymptotic run-time than any previously-published algorithm.
Preliminary investigation shows, however, that our new algorithm is not yet ready for practical
implementation. Its enumeration is inefficient, compared to the Dreyfus and Wagner approach,
for all feasibly-small n. We are now trying to reduce the constant factor in the exponent of our
algorithm’s 20(V7198%) run_time. For example, we believe that we might be able to make a factor-
of-three improvement in our upper bound on the mazCs, the maximum number of new terminals
in a subproblem. Since our run-time estimates are straightforward, we may be able to extend our
probabilistic run-time guarantee to other input distributions.

We would like to emphasize that it is not difficult to compute the run-time of our algorithm,
for a given set of sites, in advance of the computation. Such a run-time estimate could be done
in low-order polynomial time, by counting the number of sites in the vicinity of the cuts in our
recursive planar dissection. This indicates another possibility for constant-factor improvements in
our algorithm. For a given set of sites, it may be better to subdivide at something other than the
median coordinate. The tradeoff is between having an even split of the sites (i.e., a lower recursion
depth), and having a small number of sites in the vicinity of a cut (i.e., a lower mazC).

In previous work, we explored a related divide-and-conquer algorithm for rectilinear Steiner
tree minimization [8]. That algorithm was provably fast, but probably optimal if the sites were
drawn from a uniform distribution. In essence, we asserted likely bounds on mazC. However, we
subdivided between medial sites, rather than through the medial site. This may have some constant-
factor advantages, but our proofs became very complicated due to the conditioning this scheme
placed upon the site distribution within subdivisions.

We foresee some eventual practical applications for our work. In VLSI design, signals are typ-
ically distributed on wiring that takes the form of rectilinear trees. Minimum-length trees are
low-capacitance trees, beneficial because they present low load to the signal driver. Steiner tree
minimization algorithms are thus used in many systems for wire routing in VLSI. Also, the midline
of the VLSI chip is sometimes a bottleneck for intrachip wiring. Our bounds on mazC, and our
lemmas on the structure of canonical Steiner trees, may thus influence the design of future Steiner
tree heuristics.
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