Randomized Construction of the Upper Envelope of Triangles in IR**

J. D. Boissonnat!

Abstract

In this paper we describe an on-line randomized algorithm
for computing the upper envelope (i.e. pointwise maximum)
of a set of n triangles in three dimensions. Adapting the
analysis technique from [1], we can insert the n-th triangle
in O(logn y_"_, ﬁJ;'gQ-u) expected time where f°(r) is the
expected size of an intermediate result for r triangles. Thus,
in the worst case the expected time for the insertion of the
last triangle is bounded by O(na(n)logn). This algorithm is
easy to implement and works also nicely for surfaces of fixed
maximum degree. Furthermore, it is an algorithmic tool for
solving translational motion planning problems on a terrain.

1 Introduction

In this paper we consider the following problem. Let
S1,853,...,Sn be n d-simplices in IR%*!. Each d-simplex
S; can be regarded as the graph of a partially defined
linear function z441 = fi(z1,Z2,...,24). The upper en-
velope of the d-simplices is the pointwise maximum of
these functions. For an example of an upper envelope
of a set of triangles see Figure 1. We wish to compute
the upper envelope of a set of triangles in three dimen-
sions. In [8] and [4] the total number of all i-dimensional
faces of such envelopes was analyzed. It was shown that
the combinatorial complexity of the upper envelope of n
d-simplices in IR%*! is ©(n%a(n)), where « is the func-
tional inverse of the Ackermann function.

An attractive approach in computational geometry to
_solve difficult problems is to use simple randomized in-
cremental algorithms. Their complexities are not worst
case optimal, but only expected when averaging over
all the possible executions of the algorithm. In [1] a
data structure, the influence graph, for the design of
on-line geometric algorithms was developed which pro-
vides bounds for their expected space and time com-
plexities when averaging over all permutations of the in-

put data. In the following we will present an on-line

randomized algorithm for constructing the upper enve-
lope of a set of n triangles in three dimensions which
adapts this general technique to two layers of influence
graphs. Its expected update time for the n-th triangle is

tInstitut National de Recherche en Informatique et Automa-
tique — B.P.93 — 06902 Sophia-Antipolis cedex (France)
Telephone : +3393 65 77 62 — Fax : 93 65 77 65
e-mail : boissonn@sophia.inria.fr dobrindt@sophia.inria.fr

* This work was partially supported by the ESPRIT Basic Re-
search Actions Nr. 3075 (ALCOM) and Nr. 7141 (ALCOM II).

K. Dobrindt!

O(logn Y r_, ﬂ.l;g&’.ll), where fO(r) is the expected size
of an intermediate result for r triangles. Thus, in the
worst case it is bounded by O(na(n)log n). However, in
most pratical situations its behavior will be much better.
This algorithm is simple and it can be used for surfaces
of fixed maximum degree with the same time complexity
depending on f°(r).

Figure 1: The upper envelope of five triangles

In [5] a worst case optimal deterministic algorithm
for constructing the upper envelope of a set of n tri-
angles in three dimensions was presented, which takes
O(n%a(n)) time and storage. However, since the algo-
rithm includes the computation of an arrangement of 3n
lines in the plane, its lower bound is Q(n?). In the case of
the pairwise disjoint d-simplices the combinatorial com-
plexity of their upper envelope is ©(n4) and it can be
constructed using the above algorithm in the same time
bound. The hidden surface removal problem where the
viewpoint is assumed to be at infinity in the direction
of the third coordinate axis is a special case of the en-
velope problem. An incremental randomized but static
algorithm for hidden surface removal of non-intersecting
faces in three dimensions whose expected running time is

-Ofnlog® n+9(1) log n) was given in [6]. The value 8(1) of

the 0 series is defined to be Z number of Juncnom at level I

where the level of a junction is the number <;f faces whlch
make it invisible. Hence, 6(1) is O(n?) in the worst case.
In [7] a running time that depends linearly on 6(1) is
achieved. In [9] bounds on the size of the upper enve-
lope for special cases of bivariate functions were obtained
and deterministic algorithms for their calculation by a
factor log n worse than the bounds were presented. In
the non-linear cases our general algorithm has the same
time complexity as these specialized algorithms.

311

312

z3
z2

T

Figure 2: Vertical walls are raised to decompose cells into prisms

2 The Algorithm

The algorithm described in the following is an incremen-

tal algorithm and uses the general technique of the in- _

fluence graph of [1]. Its analysis is randomized.

The triangles are added one by one and we maintain
a decomposition C of the space above the current up-
per envelope U of the set S of already inserted triangles.
This decomposition is a prism decomposition of a part
of the space defined as follows: from every point on an
edge of U extend a vertical ray in positive z-direction
(see Figure 2 left). By doing so we obtain a decompo-
sition of the space above U/ in unbounded cells with a
unique bottom face. However, the number of vertical
walls of an obtained cell needs not to be constant and
the cell may not be simply connected. Therefore, we de-
compose the vertical projection of its bottom face into
trapezoids by drawing segments parallel to the y-axis.
These segments are drawn dotted in Figure 2 right. The
corresponding operation in three dimension is to raise a
wall vertically above each inserted segment. Each cell of
the prism decomposition is now a unbounded prism with
a trapezoidal base which may degenerate to a triangle.
During the algorithm, we maintain the adjacency graph
of the cells of the prism decomposition.

Each prism F is defined by a set of triangles one of
which is the unique triangle tf in which its floor is con-
tained. The floor of F is a trapezoid which is defined
by at most four segments s;,...,8, (b < 4) where two
of them are not necessarily unique. Each segment s; is
either a portion of intersection-between the two-trian-
gles t; and tF or the projection of a portion of an edge
of the triangle ¢; onto tr. Thus a prism is defined by at
most five triangles: the triangle tr and the at most four
triangles ¢y, ...,1, corresponding to s,,...,s;.

We now define conflicts between triangles and prisms.
A triangle and a prism are in conflict, if their intersection
is not empty. The goal of our algorithm is to construct
for a given set S of triangles the prisms which are defined
by triangles of S and which do not conflict with any tri-
angle of S. Such prisms are called empty. These are the

cells of the prism decomposition of the upper envelope
of S.

Let t be the new triangle to be inserted, U the current
upper envelope and C its prism decomposition. First,
we determine the prisms of C which intersect t. Then,
we update the upper envelope and its prism decomposi-
tion. The upper envelope after the update is called &/’.
To find the prisms which conflict with the new inserted
triangle efficiently, we maintain the influence graph or
I-DAG as location structure, which contains the history.
The nodes of this graph are associated with those prisms
that belonged to the prism decomposition at some stage
in the incremental construction. The I-DAG structure is
characterized by the two following fundamental proper-
ties. Firstly, at each stage in the incremental construc-
tion, the empty prisms are leaves of the I-DAG. Secondly,
the prism associated with a node is included in the union
of the prisms associated with its parents. We initialize
the I-DAG with a prism big enough to enclose all trian-
gles in 8. Therefore, this graph is rooted, directed and
acyclic.

In the following we describe more precisely how to

proceed, when a new triangle is added. We execute first
a location step and then an update step.

Location step: When a new triangle ¢ is added, we
first locate all the prisms in conflict with t. This is done
by a graph traversal that starts at the root of the I-DAG

- -and visits recursively, for each node in the I-DAG, all its
children, which have not already been visited and which
conflict with ¢, and finally reports the leaves visited. If
no leaf of the I-DAG is in conflict with ¢, ¢ intervenes
neither in the current upper envelope nor in the upper
envelopes to be computed in the following.

Note that as opposed to other randomized construc-
tions it is not sufficient to locate only the first conflicting
prism. Indeed since the conflicting prisms do not neces-
sarily belong to one connected component, we cannot
find all conflicting prisms by using adjacency relations.

Figure 3: Six new cells whose floor is not t in a vertical
projection.

AN

Figure 4: The merge seen in projection onto a horizontal
plan: the dotted walls are removed.

Update step: We partition the cells of C which inter-
sect t in those of type 1 which are cut in two sub-cells by
t and the others of type 2.

Firstly, we construct only the cells of the new upper
envelope U’ whose floor is not contained in ¢t. Therefore,
let F be a cell of C of type 2. The portion of F belonging
toU’ is decomposed in at most six new prisms (see Figure
3). A new node of the I-DAG is created for each new
prism and linked to the node corresponding to F.

Some of the prisms are not proper prisms yet and have
to be merged with adjacent prisms to obtain the prism
decomposition of U’. This merge is analogous to the
merge used in the incremental construction of the trape-
zoidal decomposition of line segments in the plane (see
for example [2]) and proceeds as follows. Each wall of
F is cut by t in at most three wall portions. The lower
edge of at most two of such portions is not contained
in t. Those wall parts which do not contain a vertex of
the upper envelope are not walls of the new prism de-

composition and have to be removed. Their twoincident -

prisms have to be merged (see Figure 4). The adjacency
graph is updated accordingly.

At the end we have constructed all those cells of the
new upper envelope whose floor is not contained in t.
We still have to construct the remaining cells. We will
denote the union of the cells of type 1 and of those parts
of cells of type 2 (prisms whose base is not necessarily
trapezoidal) whose floor is contained in ¢t by P. As it
can be seen in Figure 5, P is not necessarily connected.

313

the new inserted
triangle ¢

Figure 5: The new inserted triangle ¢ and union P in a
vertical projection.

We compute P using the adjacency graph of the cells.
A connected component of P corresponds to a face f of
the upper envelope &’ above which the maximum height
is assumed by t. We construct the trapezoidal decompo-
sition of f using the incremental randomized algorithm
in [1] and raise a wall vertically above each edge of the
trapezoidal decomposition. Thus, we obtain a secondary
influence graph which represents the prism decomposi-
tion of the part of the space above f. Then we link
the nodes in the I-DAG corresponding to the cells of the
connected component of P to the root of this secondary
influence graph. We repeat this process for all the con-
nected components of P.

This concludes the description of the update step and
by that the description of the algorithm.

3 Analysis of the Algorithm

We will now analyze the running time using the main
results from [1]. In our graph we distinguish between
the principal nodes corresponding to empty prisms at
some stage in the incremental construction and sec-
ondary nodes which are inner nodes of the secondary
influence graphs.

For the analysis we need some notations. Accord-
ing to the preceding section each prism is defined by at
most five triangles. Let f°(r) be the expected number
of empty prisms defined by an r-random sample of S.
The expected number f!(r) of prisms defined by an r-
random sample of § with exactly one conflict is bounded
in [2] by O(f°(1r/2])). Although, we are not exactly in
the framework of [1] because of the presence of the sec-
ondary nodes, we can apply their proofs to our case with-
out modification to bound the number of principal nodes
created and visited during a location step.

It follows that the expected total number of princi-

pal nodes in the influence graph is O(3",_, L";@). To
bound the number of secondary nodes in the I-DAG of
S, we observe that at stage r of the algorithm the size

of the union P, is bounded by the number of princi-

314

pal nodes in conflict with the r-th triangle ¢,. Since
the width of a prism refined due to the addition of t,
is one after t.’s addition, this number is expected to be
1 f1(r). According to the result from [2] and [1] for the
incremental randomized construction of the trapezoidal
decomposition of non-intersecting line segments, the ex-
pected number of secondary nodes created during the

insertion of the r-th triangle is O(£~2), which is less
than O(ﬂrﬂ). Thus the expected total number of sec-

ondary nodes is bounded by O(}"]_; f—or(-'-'l) Since the
outdegree of each node in the I-DAG is bounded, this
is also an upper bound for the number of edges in the
I-DAG. In the worst case, fO(r) is O(r?a(r)). Thus the
total number of nodes and edges created during the in-
sertion of n triangles is bounded by O(n2%a(n)).
According to the results from [2] and [1] cited above,
the location in a secondary influence graph can be done
in O(logn) expected time, and the update of P needs
expected time O(k logn), where k is the size of P which
is proportionnal to the number of conflicting principal
nodes. The other parts of the update step require time
proportionnal to the number of principal nodes in con-
flict with ¢t. It follows that the expected costs of the
location and the update step are proportionnal to logn
times the expected number of principal nodes visited.
The expected total number of principal nodes visited
is O(3°r_, £U5/21)y which is bounded by O(na(n)).
Thus, the location and the update step for inserting the
0
n-th triangle may cost in total O(logn) ,_, L_(.I;'J_"'ll)
expected time, which is less than O(na(n)logn).
This completes the analysis of the algorithm and yields
the following theorems.

Theorem 1 The n-th triangle can be inserted in

O(logny_,_, f_"ﬂ;_"LZJl) expected time, where fO(r) is
the expected size of the upper envelope of r triangles.

Corollary 1 The n-th triangle can be inserted in
O(na(n) log n) expected time.

Theorem 2 The upper envelope of a set of n triangles
in IR? can be constructed in O(logn Y, & f°(1r/21))

expected time and in O(Y_,_, ﬁﬁ-ﬂ) expected space.

Corollary 2 The upper envelope of a set of n triangles
in IR? can be constructed in O(n2a(n)logn) expected
time and in O(n%a(n)) expected space .

"The results stated in the Corollaries 1 and 2 are ob-
tained by using worst case bounds for the size of a up-
per envelope. In most pratical situatons, however, the
performance of the algorithm will be much better. If the
triangles do not intersect, f°(r) = O(r?) which results in
an O(nlog n) expected insertion time for the n-th trian-
gle. If the triangles are half-planes, then f%(r) = O(r?)
and we obtain the same insertion time as for the case of
non-intersecting triangles.

Note that since we can identify each connected com-
ponent of P, we can use the algorithms of [3] or [10] and
compute the trapezoid decomposition of P in O(klog* n)
expected time. However, this does not change the over-
all complexity of our algorithm, because the location in
a secondary influence graph still requires O(logn) ex-
pected time.

4 Extension

The above algorithm can be generalized with slight mod-
ifications to calculate the upper envelope of surfaces of
fixed maximum degree.

Therefore, let S be a set of n continuous bivariate
functions satisfying the two following conditions. Firstly,
each triple of functions intersects in at most s points.
Secondly, each pair of functions intersects in a curve hav-
ing at most p singular points, at which the curve ceases
to be defined, has a discontinuity or a vertical tangency.
Algebraic surfaces of fixed maximum degree meet the
above conditions. The upper envelope of S is the point-
wise maximum of these functions. Its prism decomposi-
tion is defined as in section 2. In this case, the floor of
a prism is a trapezoid whose top and bottom edges are
portions of z-monotonic planar curves. The algorithm
for the construction of the upper envelope of the set S
as defined above works nicely using the result from [1]
on the computation of the trapezoidal decomposition of
planar curves of bounded degree. For its analysis we
assume that each operation involving two or three func-
tions can be done in constant time. By that we obtain
the same bounds as in the Theorems 1 and 2 depending
on the expected number f° of empty prisms defined by
an r-sample of S.

Corollary 3 The n-th surface can be inserted in

O(logny",_, ﬂy_zn) expected time where f°(r) is the
expected size of the upper envelope of r surfaces.

However, non-trivial bounds for f° have only been
proved for piecewise linear functions in [8] and for some
special cases of bivariate functions in [9]. In the non-
linear cases, our algorithm for computing their upper
envelope has the same time complexity as the algorithms
presented there but is on-line. For example, if we assume
in addition to the above conditions that each intersec-
tion curve intersects the plane z = const in at most two
points we get the following corollary.

Corollary 4 The n-th surface can be inserted in
O(A,42(n)log n) expected time, where A,;2(n) is the
maximum length of a (n,s + 2) Davenport-Schinzel se-
quence.

5 Applications

In addition to the applications studied in [5] we present
two further applications in the field of motion planning.
Moving a robot on a terrain requires the computation of
all free and stable placements of the robot. To do this,
the terrain is modelled by a polyhedral terrain 7, i.e.
the graph of a real bivariate continuous function, with
n triangular faces. The model of the robot is an arbi-
trary polyhedron P with m vertices. At [l of its vertices,
vertical springs with a certain maximal extension h are
attached. We now want to find all translations of P
avoiding 7 at which the vertical distance from each of
the ! chosen vertices of the polyhedron to 7 is less than
the maximal extension h.

To obtain the set of stable placements we first form the
Minkowski differences of 7 and v; where v; is a chosen
vertex of P with 1 < ¢ < [l and translate them then by
h in a vertical upwards direction. The set of all stable
placements is the lower envelope of these ! translations
of T. The size of this lower envelope is O(I*n?) for I <
a(ln) (otherwise O((In)%a(In))), since we can replace the
upper bound for the size of the lower envelope restricted
over some line used in the proof of main theorem in [8]
by O({?n), which is an upper bound for the size of the
lower envelope of | monotone chains of length n.

From (5] it follows that the set of free placements is
the upper envelope of the Minkowski differences of the
convex parts, which partition 7, and P.

Now, instead of first constructing the set of all sta-
ble placements and the set of free placements separately
and then computing their intersection to obtain the so-
lution space, we slightly modify our algorithm for the
computation of the envelopes to compute the solution
space directly. The complexity of the solution space is
therefore O((mn)*a(mn)).

To model a more realistic robot with wheels, we attach
spheres with radius r at the bottom endpoints of the
springs. In this case we have to construct upper and
lower envelopes of triangles and spheres and cylinders
with radius r by applying the extended algorithm of the
previous section.

6 Conclusion

In this paper we have given a simple on-line algorithm
for constructing the upper envelope of triangles in three
dimensions. Its analysis is randomized and adapts the
.general technique from [1]. However, it remains open
“if it is possible to remove the logn factor in our analy-
sis. Furthermore, a main remaining open problem is the
generalization of the algorithm to higher dimensions.

315

References

(1] 3-D. Boissonnat, O. Devillers, R. Schott, M. Teil-
laud, and M. Yvinec. Applications of random sam-
pling to on-line algorithms in computational geom-
etry. Discrete and Computational Geometry. To
appear. Available as Technical Report INRIA 1285.
Abstract published in IMACS 91 in Dublin.

[2] K.L. Clarkson and P.W. Shor. Applications of ran-
dom sampling in computational geometry, II. Dis-
crete and Computational Geometry, 4(5), 1989.

[3] O. Devillers. Randomization yields simple
O(nlog* n) algorithms for difficult Q(n) problems.
International Journal of Computational Geometry
and Applications, 2(1), March 1992.

{4] H. Edelsbrunner. The upper envelope of piece-
wise linear functions: tight bounds on the num-
ber of faces. Discrete and Computational Geometry,
4:337-343, 1989.

[5] H. Edelsbrunner, L.J. Guibas, and M. Sharir. The
upper envelope of piecewise linear functions: algo-
rithms and applications. Discrete and Computa-
tional Geometry, 4:311-336, 1989.

[6] K. Mulmuley. An efficient algorithm for hidden sur-
face removal. In ACM SIGGRAPH, Symposium on

Computer Graphics, Vol 23, pages 379-388, 1989.

[7] K. Mulmuley. On obstruction in relation to a fixed
viewpoint. In JEEE Symposium on Foundations of
Computer Science, pages 592-597, 1989.

(8] J. Pach and M. Sharir. The upper envelope of piece-
wise linear functions and the boundary of a region
enclosed by convex plates: combinatorial analysis.
Discrete and Computational Geometry, 4:291-309,
1989.

[9) J.T. Schwartz and M. Sharir. On the two-
dimensional Davenport-Schinzel problem. Journal
of Symbolic Computation, 10:371-393, 1990.

[10] R. Seidel. A simple and fast randomized algorithm
for computing trapezoidal decompositions and for
triangulating polygons. Computational Geometry

Theory and Applications, 1(1):51-64, 1991.

