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Abstract

The technique of optical computing is applied to develop a new filling al-
gorithm which fills the interior of a polygon in constant time whereas conven-
tional filling algorithms have at least Q(n log N) time complexity, where  is the
number of boundary pixels of a polygon, and N is the diameter of the polygon
expressed in terms of pixels.

1 Introduction

The filling of the interior of a polygon is an important problem in image processing,
pattern recognition and computer graphics. This problem has received much attention
from computer scientists who have proposed many solutions intended for ordinary
display devices [10], [8], the best of which [1], as far as we know, has O(nlog N) time
complexity, where n is the number of pixels contained in the boundary and N is the
number of pixels contained in the diameter of a polygon.

The same problem also emerges in optical image processing where images are
represented on special optical devices called spatial light modulators (SLM) in the
form of distributions of transmittance (or reflection) coefficients of their pixels [5].

The main advantage of SLM, in comparison with usual display devices, is that
we can control the transmittance coefficient of light both optically and electronically.
The first way is preferable because optically we can control all pixels in parallel.

Optical control of the transmittance coefficient proceeds as follows. Let A(i, ) be
the amplitude of an incident plane lightwave at pixel (,7). If the SLM is in control
mode, then the transmittance coefficient of the pixel becomes A(i,7) (in working
mode SLM simply transmits incident light through each pixel relaxing its amplitude
proportionally to the optical density of the pixel).

Obviously, two plane waves A(n,m) - ef(wt+eonst) 554 B(n,m) - eilwtteonst) cap pe
added to yield a new wave (A(n,m) + B(n,m)) - eiwt+const) Thys optically, we can
perform



e addition: C(n,m) = A(n,m) + B(n,m) of two images in parallel for every n,m.
Analogously, in parallel for each pixel we can also perform the following operations:
e subtraction [7): C(n,m) = A(n,m) — B(n,m);

e scalar multiplication: C(n,m) = k- B(n,m) which is obtained as a result of the

passage of light through both the SLM containing B(n,m) and the SLM whose pixels

have optical density k. We assume that photodetectors cannot distinguish between two
electromagnetic waves if their amplitudes differ by less than unit under appropriate
scaling. Thus, elements of the matrices we deal with are positive integers and scalar
multiplication of an image is, in fact, the operation: C(n,m) = |k - B(n,m)].

o filtering of an image at a given level L [12]:

1, if B(n,m) > L;

0, otherwise;

C(n,m) = Filtery(B(n,m)) = {
e convolution [11]:

N M
C(n,m) =33 A(n—i,m—j)- B(i,j) = A(n,m) * B(n,m);

i=1 j=1

e correlation [9):

N M
C(n,m) =33 A(i+n,j +m) - B(i,j) = A(n,m) © B(n,m);

i=1 j=1

Convolution and correlation can serve as the basis for a variety of more compli-
cated operations on 2-dimensional images. For example, if

_J1, ifn=pm=gq
B(n,m) = {0, otherwise,

then C(n,m) = A(n,m)* B(n,m) = A(n — p,m —q) is the image A(n,m) shifted by
the vector (p, ¢). Since, convolution is performed optically in constant time, we can
translate any image by a vector also in constant time. Moreover, if

B(n,m) = {1, if (n,m) € {(pk,qx)} X,

0, otherwise,
then
M
C(n,m) = z A(n — pg,m — qi).

: k=1
Thus, we can place several copies of image A at given positions simultaneously in
constant time.

Now let A and B be binary images and let B consist of L pixels. Then

L, if Bam C A

C(n,m) = A(n,m)® B(n,m) = { l< L, otherwise,
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where B, is the copy of B moved to the pixel (n,m).

Thus, having performed filtering of the image C at level L we can recognize all
occurrences of image B in image A and determine locations of these occurrences.

Suppose now we need to substitute all occurrences of image B in image A by
another image, B;. This can be performed in constant time as follows:

Step 1. Compute correlation C; = A ® B to determine all occurrences of B in A.
Step 2. Perform filtering C, = Filter;(C;) to determine the locations of these occurrences.

Step 3. Perform convolution C3 = B * Cy, which gives the union of all occurrences of B in

>

Step 4. Compute Cy = A — C; to determine those pixels of A which are not contained in
Cs. :

Step 5. Compufe Cs = B, * C; to substitute all occurrences of B by B,.
Step 6. Compute the final result C = C5 + C,. )
The technique described is called symbolic substitution (SS) [3].

We see that optical computing provides a variety of very complicated operations
on images which can be performed in constant time. Therefore, based on these
operations, we can try to reduce time-complexity of the filling. The previous attempt
to achieve this objective undertaken in [6] gave an optical filling algorithm having only
O(N) time-complexity, where N is the number of vertices of a polygon to be filled.
This paper aims to propose a new filling algorithm having O(1) time-complexity.

2 An algorithm for reconstruction of any plane
image from its refined boundary

To obtain the idea of the algorithm turn from a discrete plane consisting of pixels
to a continuous plane consisting of points and consider any horizontal line y=a
intersecting the plane figure.

What segments of this line lie in A? To answer the question we should assign a
weight to each intersection point (z;(a),a) by the following recurrence formulae:

(1,  if the :** intersection is of
the first type (see fig. 1 a, b );
. ,  if the ¢*" intersection is of
weight(i(a),) = 3 weight(zu(a)a) +{ _y e Secan wpe (see fg. 1, d);
- the third type (see fig. 1e, f);
0, if the i** intersection is of
the fourth type (see fig. 1 g, h ),

Wi

where ¢ is the number of intersection in order from left to right.
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It is easy to see that each segment of the line whose left endpoint has an odd
weight, lies in A.

We can also attribute a weight to other points (z,y) by the following formulae:
weight(z,y) = ) weight(zi(y),y).
zi(y)<z
Obviously, only points with an odd weight lie in A.

Now attribute a type to each point of 34 as follows: the type of a boundary point
is the type of the intersection between 3A and the horizontal line passing through this
point. Since interior points of horizontal boundary segments cannot be intersection
points, we attribute to them the fourth type. Thus, we have:

4
94=)S,
i=1

where S; is the set of boundary points of the i** type.
Theorem 2.1
. 1 1
weight(z,y) = 5y * ray(z,y) + S2 % 5 - ray(z,y) + Ss » —(3) - ray(z,y),

where .
1, fz>0,y=0;

ray(z,y) = {0, otherwise,

and convolution between set S and any function f(z,y) is defined as follows:

S*f(z,y)= > flz-py—gq).

(p9)€S

We omit the proof in this version.

Let us now turn from the plane consisting of points to the plane consisting of
pixels-and generalize the approach stated above.

Instead of the function ray(z,y) consider the image

1, fm=1,n2>1;
0, otherwise.

RAY (n,m) = {

Instead of boundary points of the i** type consider boundary pixels of the it type (see
fig. 2). We assume here that each boundary pixel is adjacent to exactly two others
because those boundary pixels which do not satisfy this property can be removed
from the image without breaking its topology (we omit the proof of this assertion).
The removal is performed in constant time using technique of SS (we omit details in
this version). :

Let S; be now a set of boundary pixels of the :** type and
WEIGHT(n,m) = 5, *2- RAY (n,m) + S; x RAY (n,m) — S5 * RAY (n,m).
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It is easy to see that the interior of A consists only of those pixels (n,m) which
have WEIGHT (n,m) not proportional to 4.

Hence, we can propose the following filling algorithm.

Step 1. Remove redundant boundary pixels which are not of type 1, 2, 3 or 4.

Step 2. For each i = 1,3 recognize boundary pixels of the i** type . For this aim correlate -
the boundary with masks depicted on fig. 2 respectively and filter the resulting images at
level 3. As a result we obtain images $;, 52 and Sj. '

Step 3. Compute
WEIGHT(n,m) = S +2- RAY (n,m) + S, + RAY (n,m) — S3 » RAY (n,m).

Step 4. Compute
W(n,m)= |WEIGHT(n,m)/4].

Step 5. Compute

INTERIOR(n,m) = WEIGHT (n, m)~4-W(n,m) = {(2) ft;‘:vg‘s’f‘ (1, m) is interior;

- Since each step of the algorithm requires constant time for its performance, we
obtain:

Theorem 2.2 The interior of a plane image can be filled optically in constant time.
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Figure 1: four types of intersections; directions of boundary segments are shown by
arrows, points of intersections are indicated as rings.
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Figure 2: boundary pixels of the first, second, third and fourth types marked as 1, 2,
3 and 4 respectively.
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