A Practical Algorithm
for the
Greedy Triangulation of a Convex Polygon

Graham D. Finlayson and Binay K. Bhattacharya
School of Computing Science
Simon Fraser University
Vancouver. V5A 156
email: graham@cs.sfu.ca

Abstract

A triangulation of a convex polygon can be considered to be a set of non-intersecting chords (chords join
two vertices) such that the polygon is partitioned into triangles. The greedy triangulation (GT) set is built
by repeatedly adding the minimum length internal chord such that this chord does not intersect with any
already in the set.

Recently Levecopolous and Lingas[6] presented an asymptotically optimal, O(k*n) (k > 42), algorithm
for the greedy triangulation problem. In this paper we develop a new practical k-d tree based algorithm
for the greedy triangulation problem with average case complexity of O(nlogn). Every time the proposed
algorithm adds a minimum length chord, it makes at most 6 searches of the k-d tree.

1 Introduction

A triangulation of a convex polygon can be considered as a set of non-intersecting chords such that the interior of
the polygon is partitioned into triangles. A chord is a line segment joining non-adjacent vertices in the polygon
2n-5
n-3
vertices [2]. Let each chord in a triangulation be assigned a weight equal to it’s length. Further let the sum of the
weights of these chords define the weight of a triangulation. The minimum weight triangulation (MWT) of an n-
vertex simple polygon can be determined in O(n®) worst case time[3]. However an algorithm which is guaranteed
to generate a triangulation whose weight is close to optimal (the MWT) but which has lower computational
costs is desirable. Levecopolous and Lingas[5] have shown that the Minimum Weight Triangulation of a convex
polygon is approximated to within a constant factor by it’s greedy triangulation whose procedure is shown in
Figure 1.

In[6] Levecopolous and Lingas have shown that the greedy triangulation set can be built locally; and as
such there is no necessity to maintain global minimum chord information. This observation led to their optimal
linear time, O(k®n), algorithm for greedy triangulation. However k > 42 and this implies that algorithms whose
asymptotic complexity is higher (O(nlogn) or even O(n?)) can perform better for convex polygons with large
number of vertices. We expand upon this idea in designing a practical algorithm for the greedy triangulation
problem.

Consider the algorithm GT for- calculating-the greedy-triangulation of a convex polygon P. To find the
minimum chord nearest neighbour information must be maintained at each of the vertices in the polygon. Each
time the polygon is split we must update this nearest neighbour information. Specifically the nearest neighbour
of a vertex must not lie on the opposite side of the minimum chord. Thus the complexity of algorithm GT
is bounded by the cost of finding the minimum chord, updating neighbourhood information and splitting the

boundary. It is well known that there are B'-%T possible triangulations of a convex polygon with n

347

348

Procedure GT(P);
{ n =number of vertices in P;
if (n < 3) then return 9;

else { ¢ =minimum chord in P;
split P along ¢ into P, and P;;
update nearest neighbours in P;;
update nearest neighbours in P;;
return {c} JGT(P,) UGT(P,);
}

Figure 1: Greedy Triangulation Algorithm: GT

polygon. In[5] Levecopolous and Lingas have shown GT can be implemented with worst case complexity of
O(n?).

In their algorithm as each minimum chord is added to the GT set the neighbourhood information at all
remaining vertices is recalculated. In this paper we exploit geometric properties of convex polygons to reduce
the cost of updating neighbourhood information in GT. This leads to two efficient implementations of GT. The
first with complexity 3n? + o(n?) will outperform the optimal algorithm for convex polygons for moderate n.
The second with average case complexity O(n logn) performs better than optimal in almost all practical cases.

2 O(n?) Implementation of GT

A convex polygon P has n vertices vg,v;,--,vn—; ordered in a clockwise direction. Each vertex has two
adjacent neighbours—v;_; and v;4; are adjacent to v;'. The nearest non-adjacent neighbour to a vertex v; in
P is denoted by N(v;). The chord [v;,v;] is a directed line segment joining v; to v; and has length [[vs, vl
If the minimum chord of a convex polygon is [vm, N (vm)] (the one chosen during greedy triangulation) then
|[vm, M(vm)]| < |[vi, M(v3)]] ,i=0,1,---,n—1. Finally we denote the halfspace which includes all points closer
to v; than v; as H(v;, v;), the halfspace to the right of [v;, v;] as #([vi, v;]) and the halfspace bounded by the
perpendicular through v; of [v;, v;] which contains v; as M([v;, v;].L).

We distinguish between two types of minimum chords. An ear is a chord which joins two vertices v; and
vi4+2. If a polygon is split on an ear then this is equivalent to deleting the vertex viy;. A guard describes all
other minimum chords. Splitting a polygon on a guard will result in two non-trivial subpolygons—both will
have to be greedy triangulated separately.

Clearly any algorithm for generating the greedy triangulation of a convex polygon must have some mechanism
for choosing it’s minimum chord. This implies that the A(v;),i = 0,1,---,n — 1 needs to be calculated and
maintained as each minimum chord is added to the triangulation. In the discussion which follows we will refer
to vertices whose nearest neighbour information changes, on choosing a minimum chord, as update vertices.

Theorem 1 When a minimum chord is added to the greedy triangulation of P the nearest non-adjacent neigh-
bours of at most 6 vertices need to be recalculated.

The general approach to proving theorem 1 involves trying to construct a polygon which when split along
the minimum chord results in maximum update vertices.

Sketch of proof for ears: By definition an ear splits a polygon of n vertices into a triangle and a polygon
with n — 1 vertices. Consider the ear to be [v;, v;42] With |[v;, vi42]| = d. Clearly v;4; must lie to the left of
[vi, vi4+2] and all other points to its right.

Lemma 1 If [v;,v; + 2] is the minimum chord and N(ve) = vig1, where k # i—1 and k # i+ 3, then
vig1, Vi € H([vi, vigo] L) N H([vis2, vi]L).

1all indices are modulo n + 1

Clearly the vertex vi must lie in H(vi41, v:) () H(vi41,vi4+2). Given the constraints of Lemma 1 we max-
imize M(vi41, %) (Y H(vi41, vi+2) (and our freedom in placing vi) if viy) lies on [v;, v;42). Note in this case
H(vig1,v:)) H(vis1, vis2) lies between two parallel lines, perpendicular to [v;, vi42], 0.5 * |[v;, vi42]] apart. It is
easy to place 2 adjacent vertices, vi; and viz in M(viq1, v;) [V H(vi1, vig2) such that N (vey) = NM(vez) = vigs.
However it is impossible to place 3 vertices such that all have v;;, as their nearest neighbour. This follows
directly from Lemma 2.

Lemma 2 Consider a triangle T with verices vg, vy and v, where |[vg, v]| < |[vs, ve]| < |[ve, va]|- If vs has the
least y-coordinate then it is impossible for T to lie between two parallel lines perpendecular to the z-azis which
are 3/[va, vl apart.

This complete the sketch of proof for ears. There are at most 6 update vertices when an ear is chosen in the
greedy triangulation: v; and v;43, the 2 vertices in H(vi41, %) () H(vi41, vi4+2) and the 2 vertices adjacent to v;
and Vi42-

Sketch of proof for guards: Let us define the lune of influence of a chord as lune([v;, v;]) = disk(v;, d) (disk(v;, d);

where d = |[vi, v;]| and disk(v;, r) is the space bounded by a circle centred at v; with radius r.
Lemma 3 If [vi, v;] is @ guard then lune([vi, v;]) must be empty.

Proof: This follows immediately from the definitions of lune of influence and minimum chord.

Let us place a vertex v; to the right of the guard [v;, v;], where v; & lune([v;, v;]). Without loss of generality
assume that vy € H(v;,v;). A vertex v to the left of [v;, v;], where i + 1 < I < j — 1 (v; is non-adjacent to v;
and v;), can have N(v) = v; if and only if v € H([vj, v:]) N H(ve, vi) N H(vj, va).

Lemma 4 The guarding property states that: if vi & lune(vi,v;) then H([vj, vi]) N H(ve, vi) NH(vj,v) = 6;
that is, vertices non-adjacent to a guard cannot have their nearest neighbours on the opposite side of the guard.

A consequence of Lemma 4 is that A'(v;) can be on the opposite side of [v;, v;] if and only if v; is adjacent to
v; or vj. This implies that there can be at most 6 update vertices for guards—uv;, v; and their adjacent vertices.
This completes the proof of theorem 1.

Theorem 1 places a constant bound on the number of update vertices created each time a polygon is split.
These update vertices can be found in O(1). For guards, the update vertices are identified by examining adjacent
vertices. However ears can create non-adjacent update vertices but these are taken care of by maintaining the
update list N'~!(v;) at each vertex.

A priori to calling algorithm GT we can initialize A(v;) and N~}(v;) (i = 0,1,---,n — 1) in O(n?) by
a simple enumeration of the distances between pairs of vertices. The initialization cost can be reduced to
O(n) using Levecopolous and Lingas’[5] extension of Lee and Preparata’s[4] all nearest neighbour algorithm?.
The complexity of GT is bounded by the cost of the basic operations update_polygon, minimum.chord and
split_polygon. These costs are dependent on the underlying data structures. Currently the only data structure
is the linked list of vertices; hence minimum chord requires n link traversals in the worst case and split_polygon
takes O(1) time. The nearest neighbour of each of the 6 update vertices takes n operations and hence updating
the polygon can cost 6n+0(1). A greedy triangulation consists of n—3 chords—this gives a worst case complexity
for GT of 3n? + o(n). Thus by characterizing the update vertices we have an algorithm which will outperform
optimal linear algorithm for convex polygons of reasonable size.

3 An O(nlogn) implementation of GT

Organizing the vertices of a convex polygon in a single linear data structure—a linked list—causes the complexity
of the minimum_chord and update_polygon to be O(n). In this section we introduce data structures which lead
to an O(nlog n) average case implementation of GT.

2The nearest neighbour of a vertex in Lee and Preparata’s algorithm can be adjacent

349

350

Figure 2: Guard-extensions

Let us store minimum chord information in a 2-3 tree where the leaves of the tree correspond to vertices in
the polygon. The leaf node representing v; stores the length of the chord |[v;, N'(v;)|. We use the 2-3 tree as a
priority queue. Thus the minimum.chord operation costs O(1). During a greedy triangulation the polygon must
be split about the minimum chord. If the leaves of the tree are ordered by increasing vertex number then the
corresponding splitting of the 2-3 tree costs O(log n) in the worst case. Thus the total cost of 2-3 tree operations
for GT is O(nlogn).

Similarly we would like to reduce the update complexity to O(log n) expected time. A k-d tree[1] is a distance
encoding data structure which allows nearest neighbour querying in O(logn) average complexity. Further
insertion and deletion also cost O(logn) expected time. The cost of splitting a k-d tree is bounded by the
number of vertices in the smaller of the resulting subtrees. Let k be the size of the smaller subpolygon generated
when a minimum chord is added to the GT set. The k-d tree is split by deleting these k vertices and reinserting
them into a new (second) k-d tree which requires O(klogk + klogn) operations. Thus the cost of splitting
k-d trees, during the entire process of greedy triangulation, is O(n log® n) since k is atmost half of the size of
the polygon being split. To achieve an O(nlogn) expected bound we show that the k-d tree does not, in fact,
have to be split.

Given a snapshot of the execution of GT, we define a guard-eztension to be either:

e an ear [v;,vi43] where either [v;,v;4;] or [vi41,vi42] is a guard already in the GT set, example (A) in
Figure 2.

e an ear [v;, v;42] where either [v;, vi41] or [vi41, vi42) is a guard-extension already in the GT set, example (B)
in Figure 2.

By definition guard-extensions are associated with a unique source guard.

Theorem 2 A polygon P’ generated from P during the ezecution of GT(P) has at most 2 chords which are
guards or guard-eztensions.

Proof sketch: Let us walk, clockwise, around the boundary of P’. At each vertex v; we make a right turn of
8; degrees. The total turn of the tour is Y7 6; = 360 degrees.

.....................

PI

Ve
- 1+l
F: Qn :
Figure 3: The turn of [v;, vi41] is equal to 6; + ;4.

Each guard edge [v;, vi41] of P’ results in turns of 6; + 6;4;. The total turn from all guards must be less
than or equal to 360 degrees. Let us calculate the turn of each guard of P’ with respect to the convex chain to
its left in P, see Figure 3.

By Lemma 3, the lune of influence of each guard must be empty. Hence it is straightforward to show that,
assuming that all vertices are at unique locations, the total turn from each guard in P (and hence P’) is strictly
greater than 120 degrees. Theorem 2 follows immediately.

Guard-extensions exhibit the guarding property with respect to their sources. That is, vertices non-adjacent
to a guard-extension cannot have their nearest neighbours on the opposite side of the corresponding source
guard.

Theorem 3 Let [v;,v;] be a source guard and [vz,vy] be an associated guard extension (the source of [vz,vy)
is [vi,v;], where i < z < y < j). If the vertez v; occurs to the left of [vz,vy] wherez+1 <k <y—1 (v is
non-adjacent 1o [vz,vy]), N(we) #u,l=7+1,j+2,---,i=2,i - 1.

Proof Sketch: Since [vs,vy] is a minimum length chord vi ¢ disk(vs,d)|Jdisk(vy,d) (d = |[vs,v]]). If
N(vi) = v, where v; lies to the right of [v;, vy] then |[vz, v]| > |[vi, ve]| and |[vy, vi]| > |[vi, ve]|. In this case it
is straight forward to show that v; € Av;v,v, where Lv.v,v, = 120 and Lv, vz vy, Lv,vyv, = 30, see Figure 4.

Lemma 5 Let us place points v. and vq on the line segment [v,, vs). and a third point v, to the right of [vs, vs)
such that Lv.v.vg > 90 then Avgv v, € lune([va, v3)).

The Av;v,vy, may contain no source guard vertices, one source guard vertex, or both source guard vertices.
In each of these cases the space to the right of [v;,v;] which can be closer to v; than v, or vy lies in Avgv, v,
. where vg and v, lie on [v;, v;] and Zv.v;,v4 > 90. By Lemma 5 this space is contained within lune([v;, v;]) which
by Lemma 3 is empty. This proves Theorem 3.

Theorem 4 Let the vertices of P be split into (any) two disjoint sets S, and S;. For each v; € S, the
N (vi) € $1US: is known. For each v; € Sy only the nearest neighbour of v; in Sz is known. The minimum
chord in P can be found by examining N'(v;) for all vertices in P.

* Theorems 2, 3 and 4 are at the heart of the O(nlogn) implementation of GT. Let P’ denote a subpolygon
generated during the execution of GT(P). We divide the vertices into 2 sets, S; contains vertices which are not
part of, and are not adjacent to guards or guard-extensions; Sz contains all other vertices. By theorem 2 the
cardinality of S; is at most 8. For any update vertex v, € S; we find N(vy,) € Sz, by brute force evaluation of

351

352

Y

Figure 4: If N'(vi) = v then v € Av,vyv,.

the distance between v, an all other vertices in S;—this costs O(1). By Lemma 4 and Theorem 3 for v, € S,
N(vu) € S1US: can be calculated by k-d tree querying in O(logn) time; since nearest neighbours of vertices in
51 cannot lie on on the opposite sides of source guards. However the nearest neighbour of a vertex can lie on the
opposite side of a guard extension. In particular a source guard vertex could be nearest. However deletion’ of
source guard vertices from the k-d tree prior to querying will ensure correct nearest neighbour updates. Finally
by theorem 4 we still maintain the minimum chord information.

Theorem 5 The algorithm GT can be implemented in O(nlogn) average case complezily with at most 6 queries
of the k-d tree for every minimum chord choice.

4 Conclusion

In this paper we have exploited geometric properties of convex polygons to design an O(nlogn) average case
algorithm for greedy triangulation. For all practical purposes this algorithm, on average, outperforms all other
greedy triangulation methods (including the linear time optimal) for convex polygons.

References

[1] J.H. Friedman and J.L. Bentley. An algorithm for finding best matches in logarithmic expected time. In
TOMS, volume 3, 1977.

[2] R. Honsberger. Mathematical Gems 1. The Mathematical Society of America, 1973.
[3] G.T. Klinscek. Minimal triangulations of polygonal domains. Ann. Disc. Math, 9:121-123, 1980.

[4] D.T. Lee and F.P. Preparata. The all-nearest-neighbour problem for convex polygons. Inform. Process.
Lett., 7:189-192, 1978.

[5] C. Levecopolous and A. Lingas. On approximation behaviour of greedy triangulation for convex polygons.
~ Algorithmica, 2:175-193, 1987.

[6] C. Levecopolous and A. Lingas. Fast algorithms for greedy triangulation. In Scandinavian Workshop on
Algorithm Theory, pages 238-249, June 1990.

