Convexity Problems on Meshes with Multiple Broadcasting

D. Bhagavathi, S. Olariu'*, J. L. Schwing', W. Shen, L. Wilson, and J. Zhang*

Department of Computer Science
Old Dominion University
Norfolk, VA 23529-0162

U.S.A.

Abstract The purpose of this work is to present simple time-optimal algorithms for a number
of convexity-related problems on meshes with multiple broadcasting, that is, mesh-connected
computers enhanced by the addition of row and column buses. More specifically, we show
that with an n-vertex convex polygon P as input, the tasks of computing the diameter, the
smallest-area enclosing rectangle, and the largest-area inscribed triangle sharing an edge with
P, can be accomplished in ©(log n) on a mesh with multiple broadcasting of size nxa.

Index Terms: convex polygons, meshes with multiple broadcasting, diameter, enclosing rec-
tangle, inscribed triangle, time-optimal algorithms, image processing, computer vision.

1. Introduction

The notion of convexity is fundamental in image processing, computer graphics, pattern recognition,
and computational geometry. In image processing, for example, convexity is a simple and important
shape descriptor for objects in the image space [2,20,22]. In pattern recognition, convexity appears in
clustering, and computing similarities between sets [7]. In computational geometry, convexity is often a
valuable tool in devising efficient algorithms for a number of seemingly unrelated problems [19].

In this work we devise simple time-optimal algorithms for performing a number of tasks involv-
ing planar convex polygons. Given such a convex polygon P, we address the problems of computing
the diameter of P, of computing a smallest-area enclosing rectangle, and of computing the largest-area
inscribed triangle sharing an edge with P. These tasks are motivated by, and find applications to, prob-
lems in image processing, computer vision, and VLSI design. Specifically, the diameter of a convex
polygon is of import in clustering [2,7,20,22], computer graphics [16], path planning [12,21], and in a
number of facility location problems [19]. The smallest area enclosing rectangle arises in image pro-
cessing [20] as well as in the compaction process in VLSI [18]. As it turns out, our algorithms are
time-optimal in the model of computation that we describe next.

An MxN mesh-connected computer consists of MN identical processors positioned on a rec-
tangular array. The processor located in row i (1<i<M) and column j (1Sj<N) is referred to as
P(i,j). Every processor P(i,j) is connected to its four neighbors P (i-1,j), P (i+1,j), P(i,j—1) and
P(i,j+1), provided they exist. The mesh-connected computer has emerged as one of the more natural
choices for solving a large number of computational tasks in image processing, computational geometry,
and computer vision [4,10,13]. This is due, in part, to its simple interconnection topology and to the
fact that many problems feature data that maps easily onto the mesh structure. In addition, meshes are
particularly well suited for VLSI implementation [1,18].

However, due to their large communication diameter, meshes-tend to-be siow when handling data
transfer operations over long distances. To overcome this problem, mesh-connected computers have
- recently been augmented by the addition of various types of bus systems [9,14,17]. One of the more
promising such augmented systems, referred to as mesh with multiple broadcasting [9,17], involves aug-
menting the basic mesh-connected computer by the addition of row and column buses (see Figure 1). In
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a mesh with multiple broadcasting, a processor can communicate with any of its four neighbors using
local communication links, or can broadcast information along any of its row and column buses. As
usual, only one processor is allowed to broadcast on a bus at one time. This architecture has proven to
be feasible to implement in VLSI and is used in the DAP family of parallel machines [1].

Throughout this paper we assume a SIMD model: in each time unit, the same instruction is
broadcast to all processors, which execute it and wait for the next instruction. Each instruction can con-
sist of performing an arithmetic or boolean operation, communicating with one of its neighbors using a
local link, broadcasting a value on a bus, or receiving a value from a specified bus. In M XN mesh with
multiple broadcasting, each processor is assumed to have a constant number of registers of size
O(log MN); furthermore, every operation involves handling at most O(log MN ) bits of information. In
accordance with other authors, we assume that communications along buses take O(1) time, independent
of the length of the bus [9,14,17].

Recently, efficient algorithms to solve a number of computational problems on meshes with mul-
tiple broadcasting have been proposed in the literature [3,9,11,15,17]). In particular, Olariu er al. [15]
report time-optimal convex hull algorithms for both meshes with multiple broadcasting and
reconfigurable meshes, while Kumar and Reisis [9] solve geometric problems on images.

The remainder of this paper is organized as follows: Section 2 discusses the time lower bounds
for these three problems on meshes with multiple broadcasting; Section 3 proposes time-optimal algo-
rithms to solve these three problems; finally, Section 4 summarizes the results and discusses some open
problems.

2. Lower Bounds

Specifying an n-vertex polygon P in the plane amounts to enumerating its vertices as p;, D2 - - - +DPn
(n23), here p;p;,; (1sisn-1) and p,p; define the edges of P. We note that the vertex representation
of a polygon can be easily converted into an edge representation with P represented by a sequence e;,
ey ....e, of edges, with ¢; (1si<n-1) having p; and p,,, as its endpoints, and e, having p, and p,
as its endpoints. Throughout this paper we assume that an N -vertex polygon is stored in an N -element
array.

A polygon P is termed simple if no two of its non-consecutive edges intersect. Jordan’s Curve
Theorem guarantees that a simple polygon partitions the plane into two disjoint regions, the interior
(bounded) and the exterior (unbounded), that are separated by the polygon. A simple polygon is convex
if its interior is a convex set [19].

In this section, we derive lower bounds for the following problems.

e DIAMETER: given an n-vertex convex polygon, compute its diameter.

e ENCLOSING RECTANGLE: given an n-vertex convex polygon, determine an enclosing rectan-
gle of minimum area.

o INSCRIBED TRIANGLE: given an n-vertex convex polygon, determine an inscribed triangle of
maximum area sharing an edge with the given polygon.

Our optimality arguments will be stated first in the Parallel Random Access Machine model
(PRAM, for short). This approach is motivated by a recent result of Lin et al. [11] that allows us to
extend many lower bound results from the PRAM to meshes with multiple broadcasting. A PRAM con-
sists of autonomous processors, each having access to a common memory. At each step, every processor
performs the same instruction, with a number of processors masked out. In a Concurrent Read
Exclusive Write PRAM (CREW-PRAM) model, a memory location can be simultaneously accessed by
more than one processor in reading, but not in writing. The interested reader is referred to [23) for a
thorough discussion on the PRAM family.

Additionally, we shall rely on a fundamental result of Cook er al. [5], asserting that the time
lower bound for the OR problem on the CREW-PRAM is Q(log n) regardless of the number of proces-

. sors used. For the sake of completeness, we define the problem and state the relevant result from [5].

e OR: given n bits, compute their logical OR.
Proposition 2.1. [5] OR has a time lower bound of Q(log n) on CREW-PRAM, independent of the
number of processors and memory cells used.
We now show the time lower bounds for DIAMETER, ENCLOSING RECTANGLE, and

INSCRIBED TRIANGLE problems to be Q(log n) on the CREW-PRAM, by reducing the OR problem
to cach of these problems. In all the derivations we use polar coordinates for convenience; as pointed



out in [19] this is not necessary.

Lemma 2.2. DIAMETER has a time lower bound of Q(log n) on the CREW-PRAM, independent of
the number of processors and memory cells used.

Proof. We shall reduce OR to DIAMETER. For this purpose, assume the input to OR is n bits b,,

by, ... ,b,. Let € be a positive real number satisfying cos-:-:— < g3+ With every bit b; associate points

p; and p,.; defined as follows: p; = (l+b,~e,%) and p,.; = (1+b;e, gn-c: E)‘

All points corresponding to 0-bits lie on the unit circle, all the others lie on the circle of radius
1+e. Note that € has been chosen in such a way that the polygon P determined by the points
P . .. .Pa2s is always convex. Further, note that the diameter of P is exactly 2 if and only if the OR
of the input bits is 0. Since the construction of P takes O(1) time using n processors on the CREW-
PRAM, the conclusion follows from Proposition 2.1. O
Lemma 2.3. ENCLOSING RECTANGLE has a time lower bound of Q(log n) on the CREW-PRAM,
independent of the number of processors and memory cells used.

Proof. We shall reduce OR to ENCLOSING RECTANGLE. For this purpose, assume the input to OR

is 1 bits by, by, ... by Let & be a positive real number satifying cos - < Tl+'e' With every bit b,

associate four points pa;_;, P2, Pas+2i-1 and poao; defined as follows: pg;y = (1+e-b,-e,&2—nl—)u),
2n 2n+2i-1 ; 2n+2i
P2 = (l+£-'b.'€-‘2'n—)- P2ns2i-1 = (lw-bie,ST)ﬁ), and pany; = (l+e—b,-e,£—2n-E-).

All points corresponding to 1-bits lie on the unit circle, all the others lie on the circle of radius
1+e. Note that € has been chosen in such a way that the polygon P determined by the points
P1. - . . .Paa is always convex. Further, note that the smallest enclosing rectangle has area 4cos2% if
and only if the OR of the input bits is 0. Since the construction of P takes O(1) time using n proces-
sors on the CREW-PRAM, the conclusion follows from Proposition 2.1. O

Lemma 2.4. INSCRIBED TRIANGLE has a time lower bound of Q(log n) on the CREW-PRAM,
independent of the number of processors and memory cells used.

Proof. We shall reduce OR to INSCRIBED TRIANGLE. For this purpose, assixme the input to OR is
n bits by, by, ... ,b,. Let € be a positive real number satisfying cos—— < ——. With every bit b,

2 - 1ve .
associate four points paj, Pai, Pans2i-1 and Pa..y defined as follows: pz,-_,=(l+b.~e.5212-nlg1: )
2 2n+2i-1 2n+2i
ps = (bie. 5, paneaios = (bie BB ang oy = (1ate, 22

All points corresponding to 0-bits lie on the unit circle, all the others lie on the circle of radius
1+¢. Note that € has been chosen in such a way that the polygon P determined by the points

P1 - .. .Pas is always convex. Further, note that the largest inscribed triangle has area smi’-;- if and

only if the OR of the input bits is 0. Since the construction of P takes O(1) time using n processors on
the CREW-PRAM, the conclusion follows from Proposition 2.1. O

To derive time lower bounds for DIAMETER, ENCLOSING RECTANGLE, and INSCRIBED
TRIANGLE on meshes with multiple broadcasting, we use the following result recently developed by
Lin ez al. [11].
Proposition 2.5. [11] With a(n) preprocessing time, any subsequent unit-time computational step on an
n-processor mesh with multiple broadcasting can be performed in one time unit on an n-processor
CREW-PRAM with O(n) extra memory, where a(n) stands for the inverse Ackermann function. O

Let Ty (n) be the execution time of an algorithm for solving a given problem on an n -processor
. mesh with multiple broadcasting, then there exists a CREW-PRAM algorithm to solve the same problem in
Tp(n) = a(n)+Ty(n) time using n processors and O(n) extra memory by Proposition 2.5. Combining
this observation with Lemmas 2.2, 2.3, and 2.4, we have the following result.
Theorem 2.6. DIAMETER, ENCLOSING RECTANGLE, and INSCRIBED TRIANGLE have a time
lower bound of Q(log n) on meshes with multiple broadcasting of size nxn. O
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3. The Algorithms

The purpose of this section is to show that the time lower bounds derived in Theorem 2.6 are tight. We
propose algorithms for DIAMETER, ENCLOSING RECTANGLE, and INSCRIBED TRIANGLE prob-
lems running in O(log n) time on meshes with multiple broadcasting of size nxn. The input to each of
these algorithms is a convex polygon P=p,, p,, . . . ,p,, With p; stored by processor P (1,j) (1<j<n).

The following result is frequently used in our algorithms.

Proposition 3.1. [9] The prefix sums (also maxima or minima) of a sequence of » real numbers can be
computed in O(log n) time on a mesh with multiple broadcasting of size nxn. Furthermore, this is
time-optimal. OJ ' ,

Our solution to the DIAMETER problem relies on the the notion of antipodal pairs [19]. Vertices
pi and p; of a convex polygon P are an antipodal pair if P has parallel supporting lines through p; and
pPj.

Proposition 3.2. [19] The diameter of a convex polygon is the greatest distance between antipodal
pairs. O

Our DIAMETER algorithm begins by mandating every processor P(1,j) (1<j<n) broadcast the
coordinates of the point it stores on the corresponding vertical bus. Next, every processor P (i i),
(1<i<n), broadcasts the equation of its incident edges through row i. Every processor P (i j) with i <j
can now detect whether the point p; and p; are antipodal. If they are, P (i,j) marks itself. As a result,
the marked processor stores an antipodal pair.

It is easy to confirm (see also [19] page 180) that in every row of the mesh marked processors
form an interval. Now detecting the leftmost marked processor in each row can be done in O(1) time.
At the same time, the rank of eacli marked processor in the corresponding row, which we call row rank,
can be decided in O(l) time. Similarly, the rank of each marked processor in the corresponding
column, called column rank, can be decided. It is easy to see that either the row rank or column rank
of a marked processor must be smaller than or equal to three. Now marked processors can be divided
into two groups. The first group consists of the marked processors with row rank smaller than column
rank. The second group consists of the others, that is, the marked processors with column rank smaller
than or equal to row rank. The first group is further divided into three subgroups by their row ranks,
and the second group is divided into three subgroups by their column ranks. Next, we send the antipo-
dal pairs subgroup by subgroup to the first row, and identify the antipodal pair with the largest distance
in each group. By Proposition 3.1, it takes O(log n) time. Finally, the diameter can be decided from
these at most six antipodal pairs, and the whole process takes O(log n) time.

To summarize our findings, we state the following result.

Theorem 3.3. The DIAMETER problem can be solved in O(log n) time on a mesh with multiple
broadcasting of size nxn. Furthermore, this is time-optimal. O

We also note that a recent result in [15] computes the convex hull of a set of n points in the
plane in O(log n) time on a mesh with multiple broadcasting of size nxn. Therefore, we have the fol-
lowing result.

Corollary 3.4. The diameter of a set of » points in the plane can be computed in O(log n) time on a
mesh with multiple broadcasting of size nxn. Furthermore, this is time-optimal. O

Now we show how to solve the ENCLOSING RECTANGLE problem. Our solution to the

ENCLOSING RECTANGLE problem relies on the following technical result.

Proposition 3.5. [8] The minimum area rectangle enclosing a convex polygon has one side collinear
with one of the edges of the polygon. [J

Our algorithm begins by having every processor P (1,j) (1<j<n) broadcast the coordinates of the
point it stores on the corresponding vertical bus. Next, every processor P (i i), (1<i <n), broadcasts the
equation of the line determined by p; -and p;; to all the processors in row i.-In each row, at most two

.adjacent processors detect that the points they hold are farthest away from the line p; p;,;. We retain the
-leftmost such processor in each row. Similarly lines, in each row, we can identify two points which

admit two different supporting line perpendicular to p;p;,;. It is easy to confirm that in O(1) time pro-
cessor P (i,i) can compute the area of the enclosing rectangle having one edge collinear with p;p;.,;.

Finally, what remains to be done is to compute the minimum of all the areas stored by processors
P (i i) (1si<n). This can be done as follows. First, every processor P (i i) (1<i<n) broadcasts the value
of the area it stores vertically to processor P (1,i). Once this information is available in the first row of
the mesh, by Proposition 3.1, the minimum of these values can be computed in O(log n) time. .

> - ~dif



To summarize our findings we state the following result.

Theorem 3.6. The ENCLOSING RECTANGLE problem can be solved in O(log n) time on a mesh
with multiple broadcasting of size nxn. Furthermore, this is time-optimal. O

Theorem 3.6 together with the convex hull algorithm in [15] imply the following result.

Corollary 3.7. The enclosing rectangle of a set of n points in the plane can be computed in O(log n)
time on a mesh with multiple broadcasting of size n xn. Furthermore, this is time-optimal. O

Now we handle the INSCRIBED TRIANGLE problem. Our solution to the INSCRIBED TRIAN-
GLE problem relies on the following technical result.

Proposition 3.8. [6] If p;p, is a chord of a convex polygon, the function which calculates the area of
triangle p;p;p, is unimodal as p; assumes values of vertices of the polygon between p; and p,. O

We begin by having every processor P(1,j) (1<j<n) broadcast the coordinates of the point it
stores on the corresponding vertical bus. Next, every processor P (i i), (1<i <n), broadcasts the equation
of the line p;p;,, to all the processors in row i. At most two adjacent processors detect that the points
they hold are farthest away from the line p;p;,,. We retain the leftmost such processor in each row and
mandate it to send the coordinates of the point it holds to P (i,i) along the bus in row i. It is easy to
see that in O(1) time processor P (i i) can compute the area of the inscribed triangle sharing the edge
pipi+1 With the original polygon. Finally, every processor P(i,i) (1<i<n) broadcasts the value of the
area it stores vertically to processor P(1,i). Once this information is available in the first row of the
mesh, by Proposition 3.1, computing the maximum of these values can be performed in O(log n) time.
The correctness of our algorithm is guaranteed by Proposition 3.8. Hence we have the following result.
Theorem 3.9. The INSCRIBED TRIANGLE problem can be solved in O(log n) time on a mesh with
multiple broadcasting of size nxn. Furthermore, this is time-optimal. O

4. Conclusions and Open Problems

To reduce communication diameter, mesh-connected computers have recently been augmented by the
addition of various types of bus systems. One of the more promising such augmented systems, referred
to as mesh with multiple broadcasting, involves augmenting the basic mesh-connected computer by the
addition of row and column buses.

In this paper, we have established Q(log n) time lower bounds for the following problems with
an n-vertex convex polygon P as input:

e computing the diameter;
e computing the smallest enclosing rectangle;
e computing a maximum-area inscribed triangle sharing an edge with P.

Furthermore, we showed that the bounds are tight by providing O(log n) algorithms to accom-
plish these three tasks on meshes with multiple broadcasting of size nxn.

Other problems seem to be harder. First, we don’t know how to determine the largest inscribed
triangle in a given convex polygon. In [6] an elegant O(n) time sequential algorithm is presented but it
does not seem to be parallelizable to run in O(log n) time. Next, it would be nice to solve the sym-
metric problems of computing the smallest-area enclosing triangle as well as the largest inscribed circle
and rectangle.
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Figure 1: A 4x5 mesh with multiple broadcasting



