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ABSTRACT We propose a new variation of the art gallery problem. We first define the guards visibility graph
in which all vertices represent guards and there is an edge between two guards if and only if these two guards can see
each other. Our minimum cooperative guards problem requires that the resulting guards visibility graph of the
solution must be connected and of course the number of guards is minimized. We show that this problem is NP-hard
for general polygons. We also propose two linear algorithms for solving this problem on k-spiral polygons, for k = 1
and 2.

1. Introductibh |

The art gallery problem is to find the placement of a minimum number of guards in an art gallery such that
every point in the gallery can be visible from at least one guard. The art gallery is represented by a polygon and the
guards are stationary points in the polygon. It is known that the art gallery problem is NP-hard [LL 86]. Many
variations of the art gallery problem consider mobile guards, such as mobile guards that patrol along an edge,
diagonal, or arbitrary line segment of the given polygon [OR 87], the watchman route problem [CN 88, CN 91], the
m-watchmen route problem [NW 90, MW 91, CNN 91], the two-guard walkability problem [IK 91, T 93], and the
k-guard walkability problem [T 93). The variations of the art gallery problem and its results can be found in [OR 87,
Sh 92].

In this paper we propose a new variation of the art gallery problem. In contrast to the allowance of a guard to
patrol along a route, we introduce the relation of "cooperation” between stationary guards in the art gallery problem.
The motivation of defining this new problem is as follows: It is rather dangerous for a guard to be stationed inside,
say an art gallery, if he is not watched by some of his companions. We define a guards visibility graph GVG(A, P)
on a set A of guards in a polygon P as follows: the vertex set is A and there is an edge between two guards if and
only if they are visible to each other in P. In addition to finding a set A of minimum number of guards that can see
the given polygon P, we require that GVG(A, P) is connected. We call the guards in our problem the cooperative
guards and call this problem the minimum cooperative guards problem, abbreviated as the MCG problem.

The MCG problem is proved in outline to be NP-hard for simple polygons in the next section. We present
algorithms for solving the problem on a restricted class of polygons, called k-spiral polygons, for k =1 and 2. In
Section 3, we present a linear time algorithm for 1-spiral polygons. Moreover, we also solve the constrained MCG
problem for 1-spiral polygons in Section 4. The constrained version of the problem is the same as the original one
except that a specified point must be included in the solution. For 2-spiral polygons, we partition it into three
subpolygons in which two of them are 1-spiral polygons. By "matching” the guards in these two 1-spiral subpolygons
such that they can be visible to each other and then solving the constrained MCG problems on each of them, we
obtain a linear algorithm to solve the MCG problem on 2-spiral polygons and present it in Section 5. Finally, we
give concluding remarks in Section 6. Limited by space, we omit all proofs. Interested readers may consult
[LHL 93].

2. The NP-Hardness of Minimum Cooperative Guards Problem

The NP-hardness of the MCG problem immediately follows the proof in [LL 86] establishing the NP-hardness of
art gallery problem. In [LL 86], an instance of the Boolean three satisfiability problem (3SAT) is reduced to the
minimum vertex guard problem for simple polygons. There is a set A of minimum number of guards stationed in the
transformed simple polygon P if and only if the instance of 3SAT is satisfiable. It can be seen that GVG(A, P)is
connected due to the transformation itself.
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3. The MCG Problem for 1-Spiral Polygons

A 1-spiral polygon P is a simple polygon whose boundary can be partitioned into a reflex chain RC and a
convex chain CC [NW 90]. Traversing the boundary of P counterclockwise, the starting (ending) vertex of RC is
called vg (ve). Starting from vg (ve), we draw a line along the first (last) edge of RC, until it hits the boundary of P at
Iy (r1). This line segment vgl; (very) and the first (last) part of CC starting from vg (ve) form a region, called the
starting (ending) region. Fig. 3-1 shows an example. Note that there must be a guard stationed in both starting and
ending regions.

convex chain CC
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region ending

I r, region
Fig. 3-1 A 1-spiral polygon.

Let us define some new terms. Let @ be a point in a polygon P. Given a reflex chain RC, we can draw two
tangents with respect to RC from a. If the exterior of RC lies entirely on the right-hand (left-hand) side of a tangent
drawing from a, we call it the left (right) tangent of a with respective to RC. Draw the left (right) tangent of a with
respect to RC until it hits the boundary of P at b. We call ab a left (right) supporting line segment with respect to a
and call b the ending point. '

We present the greedy algorithm, called MCGI,, as follows. The algorithm starts by stationing a guard at [;.
Then we find a point /; on the convex chain such that Iy} is a left supporting line segment with respect to /3. If b is
in the ending region, then we are done. Otherwise, we repeat the process until the ending point of our newly created
left supporting line segment is in the ending region. See Fig. 3-2.

l
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Fig. 3-2 A set of minimum cooperative guards {1, I3, I3, I4, I5} in a 1-spiral polygon.

Theorem 3.1 Algorithm MCG1.(P) is optimal for the MCG problem on a 1-spiral polygon P.
Corollary 3.1 Algorithm MCGI, runs in linear time.

Before going further, for solving the MCG problem for 1-spiral polygons, note that by the symmetry of the
starting and the ending region, we can start from r; and successively find the right supporting line segments until the
ending point of the last one is in the starting region. We call this counterpart algorithm Algorithm MCGI4(P). The
subscripts e and s distinguish these two algorithms.

4. The Constrained MCG Problem for 1-Spiral Polygons

The constrained MCG problem is the same as the MCG problem except that a specified point must be included
in the solution. We first slightly modify Algorithm MCGI(P) (MCGIg(P)) to obtain Procedure CGIe(P, a)
(CGIg(P, a)), where a is a point in P. Procedure CGI(P,a) (CGl4(P, a)) is similar to Algorithm MCG1¢(P)
(MCG1(P)) except that the starting point /; (1) is replaced by a. Procedure CGl¢(P, a) (CG14(P, a)) outputs a set
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of points {a=aj, a3, ..., ay} and returns the value k such that g;a;;; forms a left (right) supporting line segment, for
1<i< h-1, and gy, is in the ending (starting) region.

Next, we define two specific regions as follows. Before doing so, we have to define some notations which will
be used throughout the rest of this paper. For a 1-spiral polygon P, k denotes the minimum number of cooperative
guards in P, and {ly, I, ..., I} and {ry, r, ..., ¢} are two sets of points resulting from Algorithms MCG1(P) and
MCGI(P), respectively. A subchain of the boundary of P from point p to point ¢ in counterclockwise order is
denoted as C[p, g]. The subpolygon visible from a point p in P is denoted as VP(p). Let lg be v and rg be ve. We
define L; to be the region bounded by C[};, 5;i—1] and /_1/;, but exclusive of /i_j, for 1 <i<k. We define R;
similarly to be the region bounded by C[ri—1, r;] and riri_; but exclusive of r;_;, for 1 i < k.

Now we are ready to present the algorithm, called CMCGI(P, a), where a is in a 1-spiral polygon P. In
CMCGI(P, a), we first execute Algorithms MCGI1.(P) and MCG1(P) to obtain two sets of points {1, b, ..., Iy} and
{r1, ra, ..., rx}, respectively. Next, we test whether a is in L; N Ry_j;, for some i, or not. If a is in L; N\ Ry_;41 for
some i, we perform Procedures CGl¢(P, a) and CGIg(P, a) and report the combined results; otherwise, we simply
report {a, I3, Iy, ..., Iy}. Fig. 4-1 shows two examples.

Fig. 4-1 Examples for illustrating Algorithm CMCGI(P, a).

Lemma 4.1 (1) CGIy(P, a) = h if point a is in Ly, where I S h < k.
(2) CG1(P, a) = h if point a is in Ry, where 1 < h < k.

Theorem 4.1 For a 1-spiral polygon P, if a is in L; N Ry_j+1 of P for some i, Algorithm CMCGI(P, a) reports k
cooperative guards; otherwise, Algorithm CMCGI(P, a) reports k+I cooperative guards.

Theorem 4.2 Algorithm CMCGI(P, a) is optimal for the constrained MCG problem on a 1-spiral polygons P with a
specified point a in P.

Corollary 4.1 Algorithm CMCGI1(P, a) runs in linear time.

5. The MCG Problem for 2-Spiral Polygons

A 2-spiral polygon P is a simple polygon whose boundary can be partitioned into two reflex chains and two
convex chains. Traversing the boundary of P counterclockwise, the reflex chains and the convex chains are
encountered alternatively. We label these four chains as RCy, CCq, RCy, and CC,. ~

5.1 An Algorithm MCG2 to Solve the MCG Problem for 2-Spiral Polygons
The Algorithm MCG?2 consists of the following three steps:
Step 1: Divide a 2-spiral polygon P into three subpolygons: U, D, and M.

The algorithm is based upon the observation that we can divide a 2-spiral polygon into three specific
subpolygons. Consider the 2-spual polygon in Fxg 5-1(a). For RCy and RC; of the 2-spiral polygon, we can draw
two outer common tangents u; up” and dj“dp’. As can be seen in Fig. 5-1(a), the 2-spiral polygon is partitioned
into three subpolygons by two line segment ujuy and djd, induced from these two outer common tangents. In
general, two of them are 1-spiral polygons, denoted as U and D, and the other one is denoted as M. There are
degenerated cases. For example, the subpolygon D may degenerate into a convex polygon, a line segment, and a
point, as shown in Figs. 5-1(b), (c), and (d), respectively. The discussion of the degenerated cases will be omitted in
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this extended abstract. In the following, we assume that the 2-spiral polygon consists of two 1-spiral subpolygons U
and D.

Fig. 5-1 Three subpolygons U, D, and M in 2-spiral polygons.

Step2: Find TU and ID in U and D such ﬂlatwecanplacetwoguardsmthemrespecuvclyandthwe
two guards are visible to.each other.

We identify the parts of CCy and CC, in which a guard stationed per each of it are possibly visible to each
other by finding two inner common tangents p;'p;” and ¢;”qp’. Consider Fig.5-1(a) again. We denote
Clp2".q1’1as TU and Clpy”, 2’1 as TD. In CCy, C(q1’, u1”) is denoted as TU; and C(uy”, pp”) is denoted as
TU,. In CC;, we denote C(d;’, p1’) as TDj and C(go’, dp”) as TD,. Note that we use brackets (parentheses) to
emphasize the inclusive (exclusive) of the end points of the chain.

Since we shall station the guards on CCy and CCj, let us define two specific subchains of the convex chain in a
1-spiral polygon: one is C[J;, rx-j+1], I Si<k, and the other is C(rx—j, %), 0 <i<k. We shall use bold line
segments to denote C[J;, rx—;+1] and call it a bold subchain, and dashed line segments to denote C(rx—;, /;) and call it
a dashed subchain.

Step 3: "Match" a guard in U with a guard in D and find the final solution.

There are two distinct cases:
Case 1: There are bold subchains in TU or TD, or both. Again, there are two subcases:
Case 1.1: There are an x in a bold subchain of TU and a y in a bold subchain of TD such that x and y are visible to
each other, as shown in Fig. 5-2(a).

In this case, we perform Algorithms CMCGI1(U, x) and CMCG1(D, y).
Case 12: For any pair of bold subchains BS; and BS4 of TU and TD, respectively, there is no x in BS, and no y in
BS4 such that x and y are visible to each other, as shown in Fig. 5-2(b).

In this case, assume that there is a bold subchain BS; in TU. We pick any x in BS, and then find a
corresponding y in a dashed subchain of TD such that x and y are visible to each other. Then, we perform
Algorithms CMCGI(U, x) and CMCGI(D, y).

ey TU=

(b) Case 1.2
Fig. 5-2 Illustrations of Case 1 in Step 3.
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Case 2: There are bold subchains in neither TU nor TD. Again, there are two subcases:
Case 2.1: There is a z in M such that z is visible to an x in a bold subchain of TU; (TUy) and a y in a bold subchain
of TD) (TDy), as shown in Fig. 5-3(a).

In this case, we perform Algorithms CMCGI(U, x) and CMCGI(D, y).
Case 2.2: For any pair of bold subchains BS,, and BS4 of TU; (TU;) and TD; (TD;), respectively, there is no z in M
such that z is visible to an x in BS, and a y in BSg, as shown in Fig. 5-3(b).

In this case, we pick any x in TU and then find a corresponding y in 7D such that x and y are visible to each
other. Then, we perform Algorithms CMCG1(U, x) and CMCGI(D, y).

(a) Case 2.1 (b) Case2.2
Fig. 5-3 Illustrations of Case 2 in Step 3.

Let g(P) denote the number of minimum cooperative guards of the MCG problem for a 1-spiral polygon P.
Following Theorem 4.1 directly, the following two properties are satisfied:
(1) Algorithm CMCGI(P, a) reports a set of g(P) cooperative guards if a is in a bold subchain.
(2) Algorithm CMCG1(P, a) reports a set of g(P)+1 cooperative guards if a is in a dashed subchain.

The results of Algorithm MCG?2 is summarized in the following table.

Cases Case 1.1 Case 1.2 Case 2.1 - Case 2.2
number of guards | g(U)+g(D) | g(U)+g(D)+l | g(U)+g(D)+l | g(U)+g(D)+2

5.2. The Cormrectness and Analysis of Algorithm MCG2

Let QU be the region bounded by Clup”, u1 "1 and u;“up”, but exclusive of u;” or u’. Let QD be the region
bounded by C[d;”,d>"] and dp"d}”, but exclusive of d;” or do”. In QU and QD, let RU and RD be two regions
bounded between two inner common tangents, respectively. See Fig. 5-4.

Fig. 544 The regions QU, RU, OD, and RD.

Let A be any set of (not necessarily minimum) N cooperative guards which can see the entire P.
Lemma 5.1 There is at least one guard of A stationed in each of QU and QD.

Lemma 52 N 2 g(U) + g(D).
. Sketch of the proof: Let a be outside of U. Then, VP(@) N U C VP(x) N U where x is in QU. This means that a can
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be removed without altering the visibility of guards in U. Thus, stationing a guard outside of U can not have the
effect of reducing the number of minimum cooperative guards needed for U. The number of cooperative guards in U
(D) is at least g(U) (g(D)). Q.E.D.

Lemma 5.3 Let a be in QU and b be in QD. If a is not in RU or b is not in RD, then a and b can not be visible to
each other.

Theorem 5.1 Algorithm MCG?2 is optimal for the MCG problem on 2-spiral polygons.

Sketch of the proof: Let H be a set of cooperative guards resulting from Algorithm MCG2. The connectivity of
" GVG(H, P) is due to the algorithm itself. It can be proved that the visibility of H can cover P. We discuss the

minimality of H as follows. According to Lemma 5.1, let two guards a and b be in QU and QD, respectively. We

discuss various cases which depending upon whether a is in RU or not and whether b is in RD or not. In addition to

g(U)+g(D) cooperative guards, according to Lemma 5.3, we determine one or two more guards are needed in each

case in Step 3. Q.E.D.

Lemma 54 There are at most two bold subchains in TU (TD). If there is no bold subchain in TU (TD), there is
exactly one bold subchain in TU; (TDy), or TU; (TDy), or both.

The analysis of Algorithm MCG2 is as follows. In step 1, finding outer common tangents in a 2-spiral polygon
P can be solved in linear time [LHL 93]. In step 2, finding inner common tangents in M of P takes O(logn) time
[GHS 91]. In Step 3, since there are constant number of bold subchains which must be tested in each case according
to Lemma 5.4, and each test can be done in linear time, Step 3is linear.

Corollary 5.1 Algorithm MCG2 runs in linear time.

6. Concluding Remarks

We have proposed a new variation of the art gallery problem, called the minimum cooperative guards problem.
The problem is proved to be NP-hard for simple polygons. We presented two linear time algorithms for solving the
minimum cooperative guards problem on 1-spiral and 2-spiral polygons, respectively. We have also solved the
constrained minimum cooperative guards problem on 1-spiral polygons in linear time.

For this new problem, much remains to be studied. For example, is there a polynomial algorithm for 3-spiral
polygons, or other k-spiral polygon where k > 3?7 Is there a polynomial algorithm for other constrained class of
polygons?
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