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Abstract

In this paper we have solved the edge guard problem for spiral polygons. We have showed
that |(n +2)/5] edge guards are necessary and sufficient to cover a spiral polygon. It has been
shown by Aggarwal [Theorem 4.2-O’Rourke 87] that |(n +2)/5| diagonal guards are necessary
and sufficient to cover a spiral polygon. Edge guards are more restrictive than diagonal guards.
Hence the previous theorem can be got as a corollary using our theorem. The necessary condition
of the edge guard problem for spiral polygons has not been investigated although the diagonal
guard problem for the same has been solved [Sec 4.3-O’Rourke 87]. The necessary proof of the
edge guard problem follows from the necessary condition of the diagonal guard problem but we
have given an alternate proof of necessity.
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INTRODUCTION

A point z € P, a polygon, is said to cover a point y € P, if the line segment zy is completely in
the interior of P i.e., zy C P. A set of guards are said to cover a polygon P if these guards when
positioned at some vertices of the polygon can cover the whole polygon (such guards are called
vertex guards). A mobile guard is a guard who ‘patrols’ a fixed line segment which is completely
contained within the polygon P. A point z is said to be covered by a line segment I, if there exists a
point y € I such that zy C P. An edge guard is a mobile guard who ‘patrols’ an edge. A diagonal
guard is a mobile guard who ‘patrols’ any internal diagonal between any two vertices of P. Thus
an edge guard is also a diagonal guard but not vice versa.

A reflez chain of a polygon is a sequence of consecutive reflex vertices. A spiral polygon is
a polygon with atmost one reflex chain. The necessary and sufficiency of the number of vertex
guards required for covering a spiral polygon is [n/3]. The necessary condition was established
using a distorted “comb” example [O’Rourke 87]. Sufficiency is given by Chavatal's theorem (
[n/3] guards are occasionally necessary and always sufficient to cover a polygon with n vertices
[Chavtal 75])

The edge guard problem for spiral polygons has not been studied. In the following paper we
show that there exist spiral polygons which require [(n+2)/5] edge guards to cover them completely
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Figure 1:
and we prove that |[(n + 2)/5] edge guards are sufficient to cover any spiral polygon 1.

THEOREM

[(n+ 2)/5] edge guards are necessary and sufficient to cover any spiral polygon.

Proof of Necessity:

A generic example for n = 5k — 2 consists of 3k — 1 equally spaced vertices on the circumference of a
circle and 2k — 1 more equally spaced vertices on a slightly larger concentric circle. The consecutive
vertices on the smaller circle taken in clockwise order form a reflex chain. The consecutive vertices
on the larger circle forms another chain (non-reflex). The endpoints of these two chains are joined
to give a spiral polygon, refer to Figure 1. The consecutive vertices of the reflex chain are positioned
at angles 2i@, i=0,1,2,.....,3k — 2. The consecutive vertices of the non-reflex chain are positioned
at angles (3 + 2)@, 1=0,1,2,....... ,2k — 2. The -ve x-axis is considered as the starting point and we
move in the clockwise direction. The outer radius is chosen close enough to the inner radius so that
the edges adjacent to all even vertices v on the non-reflex chain barely touches the vertices of the
reflex chain that occur on either side of the vertex v.

LEMMA: The spiral polygon constructed above requires |(n + 2)/5| edge guards.

PROOF: To cover vertex 1 we have to have an edge guard on (1,2),(1,3), (2,5) or (3,4). An edge
guard on (2,5) covers everything covered by having an edge guard on any of the other three and
something more-so we have to have an edge guard on (2,5) in order to minimize the number of edge
guards required. An edge guard on (2,5) covers the sub-spiral polygon(SSP) (1,3,4,6,7,5,2), refer

!this fact has also been proved independently by Iliana Bjorling-Sachs [Iliana 93] in a different way
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Figure 2:

to Figure 2. Consider the points 6’ and 7’ that are very close to points 6 and 7 on the otherside of
the SSP. Join points 6’ and 7' The polygon that remains after deleting the SSP and joining 6’ and
7' is a spiral polygon similar to the original spiral polygon with n’ = n — 5 vertices. This process
can be repeated till »’ < 3 and in each step we remove 5 vertices. It will take [(n+2)/5] steps
for n’ to become less than 3 and in each step we use one edge guard. Therefore we require atleast
[(n+2)/5] edge guards to cover the whole polygon e

For any n, ( (5k—2) < n < (5(k+1)—2), a spiral polygon is constructed as described above for
n' = (5(k+1)—2) and then vertices are deleted starting at the largest angle and proceeding in the
anti-clockwise direction, ties (two vertices , one of the reflex chain and one of the non-reflex chain
occurs at the same angle) are broken by choosing the vertex on the reflex chain as the vertex to be
deleted first. n’ — n vertices are deleted and the endpoints of the reflex and non-reflex chains are
Joined to give the n-vertex spiral polygon. The necessity of [(n+2)/5] edge guards for this polygon
follows frocm the necessity of |(n + 2)/5| edge guards for the spiral polygon with n” = 5k — 2
vertices which is a part of this polygon. This is because :

(" +2)/5) = |(n+2)/5]
when n" = 5k —2and (5k—2)<n < (5(k+1)—2)

Proof of Suﬂiciency

Consider any spiral polygon. We begin by identifying a chain (SV) of atleast seven vertices, in
the original spiral polygon. The original polygon can be considered to be consisting of SV and the
remaining part of the original polygon after SV is removed. The SV is such that it is connected
to the remaining part by two edges (incident upon two different vertices v and v’ of SV), to form
the original polygon. v and v’ are connected and v and v’ are duplicated and connected. Thus we
get two spiral polygons S and S, where S consists of the SV with the last two vertices connected
and S’ consists of the remaining chain with the duplicated v and v’ (which are connected). The
cardinality of S is k and that of S’ isn — k+ 2 (The 2 is because of the duplicated vertices), where
E>1.

We give a way of identifying SV and prove that S can be covered by just one edge guard.

IDENTIFICATION and PROOF : Let the vertices and the edges on the reflex chain be num-
bered 71,72, 73, ... and e, e, €3, eg,... respectively in the order in which they occur in the clockwise
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Figure 3:

direction and let the vertices on the convex chain be numbered ¢y, ¢2, c3,-....

e Step 1 :(Refer to Figure 3(a)) Extend e;, to meet the convex chain at a point on an edge. Let
this edge be incident upon the vertices ¢; and c(;43) ( i occurs before c(;,) in the convex chain) .
Join 74 to ¢;. Consider the region above the cut. This is a convex region, because we have a convex
chain and two other edges which meet at a convex angle(the two edges are the e; and the edge
that we introduced between the 7, and ¢;), hence placing an edge guard on any edge will cover the
polygon.. If this region has atleast 5 vertices from the convex chain, then SV is the vertices from
the convex chain and the first two vertices of the reflex chain. v is ¢; and v’ is the r5.

If we have less than 5 vertices from the convex chain than go to Step 2.

o Step 2 :(Refer to Figure 3(b)) Extend e, to meet the convex chain at'a point on an edge. Let
this edge be incident upon the vertices ¢; and ¢(;j11) (¢; occurs before ¢(;;1) in the convex chain) .
Join 73 to c;. We can decompose the resulting polygon into three convex polygons. The first one is
got as in Step 1. For getting the 2nd convex polygon move along the convex chain in the clockwise
direction starting at c; , till we come to a vertex v such that the angle between c;, 72 and v is reflex
(in case we do not encounter no such vertex and we reach c;, then the second convex polygon is
the polygon that remains of the original polygon after the 1st convex polygon is removed and the
third polygon is the empty polygon). Join 7, to the vertex that occurs just before v on the convex
chain. This region is clearly convex. The region that remains is formed by a part of the original
convex chain and three more edges (e , the edge joining r3 and c; and the separation that got us
the 2nd convex polygon (r2,v)). This is also convex. All the three convex polygons have r; as a
common vertex. Having a guard here(an edge guard patrols the whole edge- including the vertices)
will cover the whole polygon. If the region that we got has atleast four vertices from the convex
chain then SV consists of vertices from the convex chain and the first three vertices of the reflex
chain. v is ¢; and v’ is r3. If we have less than four vertices from the convex chain then we go to
Step 3.

e Step 3 :(Refer to Figure 3(c)) The same procedure is repeated with e3 . We will get c; as the
last vertex on the convex chain that is encountered . In this case we can decompose the polygon
into 5 convex polygons. The first three (got as in Step 2) have 7, as the common vertex and the
other two have r3 as a common vertex. Having a guard on vertex r, and r3 will cover the whole
polygon. Having a guard on e, will serve this purpose. If the number of vertices of the convex
chain in the region got (v will be ¢; and v’ will be r4 )is atleast three then S will be the region
that is got by joining cx and r4 and the chain containing ¢;, ¢z, ..., ¢k and 71,72, 73 and 74.. Else go
to Step 4.
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Figure 4:

e Step 4 : Now the number of vertices of the convex chain in the polygon got in Step 3 is less
than .three.

Case i: The number of convex vertices is 2.
Consider the line (c3,7s), if this line is completely inside P, (cz,75) C P (Refer to Figure 4(a)),
then v is ¢ and v’ is rs.
f (c2,75) € P, then (c3,74) C P,(Refer to Figure 4(b)) (this is because only one of the vertices
of the reflex chain or one of the vertices of the convex chain can between these two vertices to
break the line between them, in which case the reflexivity of the reflex chain or the convexity of
the convex chain will be violated)?. In this case v is c3 and v’ is r4. The convex polygons obtained
in Step 3 have either ¢; or c; as one of the reflex vertices.( there is no way that all the vertices
are r;’s —because of the reflexivity of the chain and a ¢;, ¢ > 2 cannot occur because of the above
assumption). The new polygon got in this step is convex, because of the construction. Having a
guard at c; will cover this polygon. Having an edge guard on the edge (e1,¢2) will thus cover the
whole polygon.

Case 2 : The number of convex vertices is 1.
Consider the line (¢q,7s),

¥ (c1,75) C P (this line is completely inside P) then Consider the line (c1,7), if this line is
completely inside P, (¢c1,76) C P (Refer to Figure 4(c)) then
v is ¢; and v’ is 76.

If (c1,76) € P then (cz,75) C P [ARG].(Refer to Figure 4(d))

v is ¢ and v’ is 5.

*We will be using this argument in Case 2 below and will refer to it as [ARG]
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If (¢1,75) € P then (cp,74) C P [ARG].(Refer to Figure 4(e))

Consider the line (¢,,7s), this line has to be completely inside P (because ,otherwise only T4
could have come in between c; and r5 and not any of ¢;, ¢ > 2 or 7, j > 5 [ARG], in which case
the region got in step 3 would have two vertices and is the same as case 1), (¢2,75) C P then
v is ¢y and v’ is 75.

If (cz,75) € P then (c3,74) C P [ARG].

v is c3 and v’ is 4.

As in Case 1, all the convex polygons have either ¢; or c; as one of their vertices. Therefore
we can cover all the whole polygon by having an edge guard on (ci, ¢2).

Thus in all the cases we are able to cover the identified polygon with one edge guard and each
of them has atleast seven vertices e

If we begin with a spiral polygon —each reduced polygon obtained by removing S (got as
described above) is again going to be a spiral polygon because we just deleted a chain of vertices
and then joined the end points hence there is no way of another reflex chain being introduced.
Therefore the spiral nature of the polygon is preserved.

Thus by using up one edge guard for S we are left with the reduced polygon 5, which has
to be guarded. We repeat the same step of reducing the polygon till we are left with no more
of the polygon to be guarded. In each step we remove 7 vertices from the polygon and add two
vertices. Thus, we essentially remove 5 vertices in each step(except for the last step where we
remove 7 vertices). Thus after |(n — 3)/5| steps, we will be left with (atmost) a 7-vertex spiral
polygon. Which can be guarded by one edge guard. This is true because we identified a seven
vertex polygon each time and showed that this can be covered by one edge guard. If we just
assume that this (last) 7-vertex polygon is actually a part of a larger polygon and is encountered
in the beginning then we would have to delete this polygon to get a reduced polygon to go further.
Essentially, we might encounter all type of polygons and we proved that we can guard any of them
(having 7 vertices-this can be isomorphic to the sub-polygon that is left in the end ) by one edge
guard and delete that part and go ahead and cover the remaining polygon with one less guard. We
use one guard for each step, thus we will need ( [(n — 3)/5| + 1) i.e., [(n +2)/5] edge guards to
cover the whole polygon. This proves the sufficiency condition.

Therefore |[(n + 2)/5] edge guards are necessary and sufficient to cover any spiral polygon.
QEDoe e

Conclusion

In this paper we have proved that |(n+2)/5| edge guards are necessary and sufficient to cover any
spiral polygon.
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