109

Perfect Binary Space Partitions *

Mark de Berg:

Abstract

In this paper we discuss some results on perfect binary space
partitions on sets of non-intersecting line segments in two
dimensions. A binary space partition is a scheme for re-
cursively dividing a configuration of objects by hyperplanes
until all objects are separated. A binary space partition is
called perfect when none of the objects is cut by the hyper-
planes used by the binary space partition. Given a set of n
non-intersecting line segments, our method constructs a per-
fect binary space partition, or decides that no perfect binary
space partition exists for the arrangement of line segments,
in O(n? logn) time.

1 Introduction

For geometric problems where the input is a set of objects
in the plane or space, efficient algorithms are often based on
recursive partitioning. The input is divided into two parts by
splitting the set of objects with a line, in the 2-dimensional
space, or with a plane in 3-dimensional space. The two
resulting sets are then divided recursively until finally all
objects are separated. The scheme as described above is
called a binary space partition and was first considered in [2].
Since each division may split some of the objects into two
parts, the process described above can lead to a proliferation
of objects. Therefore we are motivated to search for schemes
that cut the set of objects in such a way that fragmentation of
these objects is minimized.

The problem of constructing binary space partitions of small
size has been studied by Paterson and Yao [7]. For the 2-
dimensional case they construct binary space partitions, BSPs
in short, of size O(n log n) for sets of n line segments, using a
O(nlogn) time algorithm. They also present a special kind
of BSP based on auto-partitions: a natural class of BSPs,
that can be obtained by imposing the restriction that each cut
hyperplane must be a hyperplane containing some facet of
the input set. For any n disjoint line segments in the plane, an
autopartition of size O(n log n) can be found in O(n?) time.

"Department of Computer Science,Utrecht University,P.O. Box
80.089,3508 TB Utrecht,The Netherlands. Research was supported by the
ESPRIT Basic Research Actions of the EC under contract No. 7141 (project
ALCOM II: Algorithms and Complexity). The first and third author were
also supported by the Dutch Organization for Scientific Research (NWO).

Marko M. de Groot

Mark H. Overmars

For n facets in R® they show that an autopartition of size
O(n?) can be constructed in O(n3) time, in R autopartitions
of O(n?~1) size can de constructed in time O(n%+1). Meth-
ods concerning orthogonal objects are presented by Paterson
and Yao in [8]. For any set of n orthogonal non-intersecting
line segments in the plane they construct an autopartition of
O(n) size in time O(nlogn). They also show that for any
configuration of n axis-parallel line segments in R3, a BSP
of size ©(n%/2) can be found in time O(n®/2). For a set
of n axis-parallel rectangles, they achieve the same time and

- size bounds. Finally, they present bounds on the size of a

BSP on sets of axis-parallel line segments in four or more
dimensions. '

In this paper however we restrict ourselves to perfect binary
space partitions in the plane. A perfect binary space parti-
tion is defined to be a binary space partition that prevents
any fragmentation of the objects in the input set. Finding a
perfect binary space partition for a set of n line segments will
be proved to be nz-hard_, a class of problems defined in [3],
showing that it is probably hard to find a subquadratic solu-
tion. We also present an algorithm that constructs a perfect
BSP in O(n? log n) time or that reports its non-existence.

2 Planar perfect binary space partition

Perfect binary space partitions, perfect BSPs in short, form a
class of BSPs that can be obtained by imposing the restriction
that each cut hyperplane be a hyperplane that does not inter-
sect or contain any of the objects in the input configuration.
The formal definition of a perfect BSP tree is as follows:

Definition 2.1 A perfect binary space partition (perfect BSP)
for a set S of objects in d-dimensional space is a binary tree
T with the following properties:

o If|S| < 1then T is a leaf: the set S is stored explicitly
at this leaf.

o If |S| > 1 then the root v of T stores a hyperplane
h., such that the set of objects that are contained in or
intersected by h,, is empty. The left child of v is the root
ofaBSPtree T* forthesethinS = {s € S:s C h}},
where h} is the region above h,, and h} N S is non-
empty. The right child of v is the root of a BSP tree T~

110

Figure 1: no perfect BSP

for the set h;; N S, where h;; is the region below h,,
and h;; N S is non-empty.

Observe that it is not always possible to find a perfect BSP
given a configuration of objects, since configurations can be
constructed that do not permit a perfect BSP, see Figure 1.

In this paper we study. perfect BSPs for sets of non-
intersecting line segments in the plane.

2.1 The lower bound

There are many problems in computational geometry for
which the best known algorithms take at least ©(n2) time in
the worst case while only very low lower bounds are known.
In [3] Gajentaan and Overmars describe a large class of so-
called n2-hard problems which they prove to be at least as
difficult as the following base problem: Given a set S of n
integers, determine the existence of three elements of S that
sum up to zero. The best known algorithm for this base prob-
lem takes ©(n?) time. They prove that the class of n2-hard
problems includes the following problem, which they call
GeomBase: Given a set of 7 points with integer coordinates
on three horizontal lines y = 0,y = 1 and y = 2, determine
whether there exists a non-horizontal line containing three of
the points. We prove that this class of n2-hard problems in-
cludes our problem of finding a perfect binary space partition
by showing our problem is as least as hard as GeomBase.
This means that it will be difficult to obtain an o(n?) running
time.

Theorem 2.2 It is n?-hard to decide whether a set of n dis-
Joint line segments in the plane admits a perfect binary space
partition.

Proof: = We show that the problem of finding a perfect
BSP is as least as hard as the problem GeomBase. Given
a set of points on three horizontal lines y = 0,y = 1 and
y = 2. Let the z-coordinates of the points on the first line
A, ordered from left to right be a3, as,...,a;. Similarly,
let the points on the other lines B and C be by, bs,...,b;

and ¢;,¢2,...,cx. Lete = %. Now transform the points

Figure 2: finding a perfect BSP is n2-hard

*, the separator

Figure 3: a perfect BSP

on A into horizontal line segments on A with z-intervals
[a1 +€:az—¢€,...,[ai_1 +€:a; — €. And add one very
long line segment extending from a; — e to the left and one
very long line segment at a; + € extending to the right, see
Figure 2. Similar for the sets B and C. Finally we place two
vertical line segments at the left and right of our arrangement.
Clearly this transformation can be done in time O(nlogn).
In [3] the same construction is used to prove the n2-hardness
of a separator problem.

It is obvious that, when there is a line through the points a
on A, bon B and c on C, a separator exists for the set of
line segments that goes through the holes related to a, b and
c. Once given such a seperator, a perfect BSP can easily be
constructed, see Figure 3 where the dotted lines indicate the
perfect BSP.

It remains to prove the reverse. If a perfect BSP exists of
the set of line segments constructed, then the first partition
line must be a separator of the set of line segments. From
the construction it is clear that this partition line must run
through three holes (¢ —¢ : a+€)on A, (b—e:b+¢€) on B
and(c—€e:c+e)onC. So(a+d;)+ (b+3d2) =2(c+d3)
for 1,82 and J3 between —e and €. Because € = § and a,b

" and c are integers, this is only possible when a + b = 2¢, thus

when there is a line through points on A, B and C. a

Hence, it is probably hard to find a subquadratic solution of
the construction of a perfect BSP of a set of non-intersecting
line segments in the plane.

2.2 The algorithm

In our algorithm to compute perfect BSPs, visibility graphs
play a crucial role. The visibility graph G5 of a set of non-

T~ v T

4.i: inner tangent 4.ii: outer tangent

Figure 4:

intersecting line segments S is a graph structure, where the
vertices of the graph equal the endpoints of our input line
segments and where two vertices are adjacent if the interior
of the segment connecting the two corresponding endpoints
does not intersect any of our input line segments except in
their endpoints. The usage of the visibility graph G5 of the
set of line segments S is built on the following observation:
each partition line of the set S of line segments that does not
intersect any of these line segments and that partitions the
set in two non-empty subsets, can be slightly rotated until it
touches two line segments each at a side. The line segment
defined by the two points, in'which the rotated partition line
touches the line segments, is an edge of G5. We can formalize
this observation as follows:

Observation 2.3 If a line exists that partitions the set of
line segments S in exactly two non-empty subsets without
intersecting any of the line segments of S, then there also
exists such a line that contains an edge of G .

We will not view this visibility graph G as a graph structure
but as a geometrical structure, i.e. when we speak of an
edge e of G5, we mean the line segment connecting the
corresponding endpoints. Partition lines of our set S can be
found by extending each edge e of G5, where the extension
£, of an edge e is the line containing e. Notice we only have
to extend those edges of G5 that are inner tangent edges of
G's, because the outer tangent edges correspond to partition
lines that do not split the set of input line segments in two
non-empty subsets. See Figure 4.

Let G5 be that subgraph of Gs from which all outer tangent
edges are removed. We extend each edge e of G5 to a line
£., with the restriction that £, may not intersect any of the
line segments of S, see Figure 5. So if it is not possible to
extend an edge to a line, we extend it to a line segment that
is as long as the configuration of the set S of line segments
permits, see Figure 5.ii. A half-line will be the result of an
extension that is restricted at just one side, see Figure 5.iii.
We denote the resulting set of extensions by E. We define
two types of extensions. One type denotes the edges of which
the extension is a line, those we will call partition lines. We
denote the set of all partition lines by E,. The other type
denotes the edges of which the extension is a half-line or
a line segment, those we will call candidate partition lines.
The set of all candidate partition lines is denoted E,. For
our method it is necessary that also these candidate partition

11

5.i: line 5.ii: segment 5.iii: halfline

Figure 5: line segment extension

lines are registered, because from this set the partition lines
for future subspaces can be chosen.

Each stage of our recursive algorithm is initiated by the choice
of a partition line £ from the set of available partition lines
E,. Let our initial space be denoted by R, the half space
above £ be called R,,, and the halfspace below £ be called R;.
The following two actions have to be taken:

1. the set of line segments .S has to be subdivided against £,
resulting in two subsets: S,, the set of all line segments
above ¢, and S, the set of line segments below £.

2. we have to update and split our sets of partition lines E,
and our set of candidate partition lines E., creating a set
of partition lines and candidate partition lines for each
of the subspaces R, and Rj.

Let the set of partition lines E, be split in two disjoint subsets
E, . for R, and E, ;, for R;. Let the set of candidate partition
lines E. be split likewise in two disjoint subsets E. , for R,
and E , for R,. When we elaborate the second action above,
the following steps have to be taken, Figure 6:

delete step From E, and E. all partition lines £, have to be
removed, for which e is cut by the partition line ¢, see
Figure 6.i.

split step E, is to be split in two subsets E,; and E, .,
where the partition line £, € E, is a member of E,; if
e lies below £, see Figure 6.ii. Otherwise £, is a member
of Ep o. Similarly, E, is to be split in two subsets E ;
and E. ,, where the candidate partition line ¢, € E.
is a member of E. , if e lies below ¢, see Figure 6.iii.
Otherwise £, is a member of E ,.

update step E.; and E, ; are to be updated, because some
{., that were candidate partition lines for R, can be
partition lines for R} and therefore have to be removed
from E. , and added to E, ;, see Figure 6.iv. Likewise,
E. . and E, , are to be updated, because some £, that
were candidate partition lines for R, can be partition
lines for R, and therefore have to be removed from
E. . and added to E, ,.

After these steps we have two half-spaces with the line seg-
ments, partition lines and candidate partition lines inside

112

6.i: deletion from E, and E, 6.ii: splitting E,

T

6.iii: splitting E.

6.iv: updating

Figure 6:

them, on which we recurse. Recursion is continued until
one of two situations occurs:

o The half space under consideration contains only one
single line segment of the set S. No further partitioning
of this subspace is necessary.

o The half-space under consideration contains more than
one line segment from .S, but the set of partition lines
corresponding to this subspace is empty. In this case
the total partition can be ended, with the conclusion that
there exists no perfect binary space partition for this
particular arrangement of line segments.

Using this strategy, we have to be sure that no partition line
is overlooked. Our previously mentioned Observation 2.3
garantees this. But what if at a certain stage in the recursion
more than one partition line is available? Can we just pick
one of the partition lines available, or do we have to take
some order or priority into consideration? The next lemma
implies that this is not necessary.

Lemma 2.4 If a perfect binary space partition exists for the
set of line segments S, then a perfect binary space partition
exists for any subset of S.

Proof: Let S’ be any subset of S. Let 75 be a binary space
partition of S. Given 7, we can easily construct a binary
space partition 75/ of S’ as follows. We leave out all leaves
of T that contain a segment not in' S’. Next we visit each
internal node v of Tg in a bottom up fashion, checking the
presence of both its children: when v has no children we
remove v from T, and in case v has one child we replace v
by this child. Otherwise v contains a partition line splitting
S’ in two non-empty subsets, and is an internal node of Ts:.
O

Thus, within our method we can define two parts. The first
part finds the initial partition lines E;, and candidate partition

Figure 7: delete e from E, resp. E.

lines E., by construction of the visibility graph G5 on the set
S of input line segments and initiates the partition. The sec-
ond part recursively applies the partition strategy described
above. Next we show how to implement this second part effi-
ciently. The method presented here is built on the concept of
tandem search, and is deduced from a method for computing
depth orders as described in [1]. Tandem search is a scheme
to partition a set of objects into two subsets in time that is
dependent on the size of the smaller of the two subsets. This
means that the more unbalanced the partitioning is, the faster
it is performed, leading to a good worst-case running time
for the algorithm.

Let Ps denote the set of the endpoints of all line segments
of S, Pg be the set of endpoints of all the extensions in E,
and £ the partition line chosen. To split our sets Ps and
Pz with £, we build the convex hulls CH(Ps) and CH(Pg).
Let Ps , be those points of Ps above £ and Ps the points
of Ps below £. Let Pg, and Pg be defined likewise for
Pg. The points of CH(Pg) are visited by means of a tandem
search, that is organized as follows. Two queries are made
on CH(Ps) for two points furthest away from £, one above
¢ and the other below £. We remove these two points from
CH(Ps) and again query for two points furthest away, each
on either side of £. As soon as no two such points can be
found, the search ends and the smaller of the sets Ps, , and
Pg, is identified. Assume Pg, is the smaller set, and let
CH(P%) be the remainder of the convex hull. To complete
Ps;, we have to add Pg to it. The case where Ps is the
smaller set is completely symmetrical.

For each point of Ps,, each extension £ incident to this
point is tested on intersection with £, as follows:

o If ¢, isintersected by £in a point on e, then £, is removed
from E, resp. E. and its endpoints from CH(Pg), see
Figure 7.

In case £, is intersected by £ in a point not on e and e lies
above £, then one of the two following actions is performed:

e (. isremoved from E, or E, and made member of Ey,q,
see Figure 8.i. The endpoints of £, below £ are removed
from CH(PEg).

/
/f
/
/
/!
/
&
0 .
/
7
/f
4 e
/
/

8.ii: add to B ,

8.i:addto E, ,

e /. isremoved from E. and made member of E. ., Figure
8.ii. The endpoints below £ are removed from CH(Pg),
endpoints of £, above ¢ are removed from CH(Pg) and
added to Pg ,.

Let the remainder of CH(Pg) be called CH(Pg). After all
points of Ps, and each extension containing one of those
points are visited, there still may remain some points of Py,
above £. These points are the endpoints of extensions £, that
cross £ while e lies below £ and that are not visited yet. To
find these points we use CH(Pg). We query for the point
that is furthest away from £ and above ¢, and we remove it
from C#(Pg). We continue querying for more such points
until no more points are left on CH(Pg) above £. Note that
the remainder of Pg, equals Pg ;. For each endpoint visited
we update the classification of £, incident to this endpoint as
described above. All extensions £, € E, and £, € E, not
visited in previous steps are added to E,, ; resp. E. p.

At this stage the set of endpoints Pg, thus also the set of input
line segments S, and the set Pg are each split by £. The set of
partition lines £, and our set of candidate partition lines E,
are also split in two disjoint subsets by £, one for the region
R, above ¢ and one for the region R below £.

Before entering the next stage of recursion, we only have
to construct the convex hulls for the sets at either side of £.
Where we can build the CH(Ps,,) from scratch, since there
are at most half as many points in Ps,, as in Pg, we have
to be careful in building the convex hull of the other subset
Psy, of Ps. We cannot afford to build the datastructures
that we need for the recursive call for the large set from
scratch. At this stage however, we have CH(Pg). We can
therefore reconstruct the convex hull CH(Ps ;) of the bigger
set by reinsertion of points from Ps into CH(Pg), that were
removed during the tandem search from C#(Ps) and put into
Ps . Note that there will be as many insertions as there are
points in Pg ,, the smaller set. Recall that we already have
CH(Pg,) at this stage. So we only have to build the convex
hull CH(Pg,,) of those points of P, that remained above £.

Note that each extension £, is visited at most four times at
each stage of the recursion: once for each of its endpoints
and once for each endpoint of e.

Theorem 2.5 The scheme as described above can be imple-
mented to run in O(n? logn) time.

13

Proof: The first step in our algorithm is to construct a
visibility graph G s on the set of input line segments S in order
to find (candidate) partition lines. In [6] a method is presented
that, given a set S of n non-intersecting line segments in the
plane, computes its visibility graph G in time O(n?). The
algorithm can easily be adapted to construct all extensions
of the line segments of the visibility graph without extra
asymptotic overhead. We spend only constant time at each
extension to classify it as a partition line or candidate partition
line. So the first part takes O(n2) time.

The second phase of the algorithm calculates recursively the
set of partition lines, while updating our search structure at
every stage of the recursion. The search is guided by the
convex hulls of the sets Ps and Pg. Clearly our scheme
needs a method for maintaining convex hulls in a dynamical
way. The best bound currently known for the dynamic con-
vex hull problem is due to Overmars and van Leeuwen [5].
They. prove the existence of a dynamic structure for solving
the 2-dimensional convex hull searching problem, such that
queries can be done in O(logn) time, insertions and dele-
tions can be done in O(log® ») time. Building this structure
takes O(n logn) time and uses O(n) storage. We use this
structure to store CH(Ps). For CH(Pg), we can use an even
more efficient structure, because we only delete points from
Pg. In [4] Hershberger and Suri describe a datastructure
for maintaining the convex hull of a set of n points, that
can be built in time O(nlogn) using O(nlogn) space and
that allows deletions 6f points in O(logn) amortized time
per deletion. Queries can be done in time O(logn). No-
tice that the set Pg initially contains O(n?) points, so we
actually need O(n? log n) time to build the data structure for
CH(Pg).

Next we analyze the time taken in a single stage in the re-
cursion. Finding the smaller subset of Ps using CH(Ps)
will take time O(k(logn + log® n)), with k the size of the
smaller subset. Visiting all extensions containing a point
of the smaller subset takes time O(kn). Deletion of the
endpoints of the crossing extensions using CH(Pg) takes
time O(mlogn), where m is the number of such cross-
ing extensions. What remains is the time needed to rebuild
our search structures. Building the convex hull structure
of the smaller subset of Ps from scratch takes O(k logk)
time. The convex hull of the larger subset of Ps is con-
structed by reinserting the kelements of Ps— Pg— Pg, smaiter
into CH(P%), taking time O(klog? k). Finally, we have to
build the convex hull structure of the endpoints of the ex-
tensions that are at the same side of £ as the smaller subset
of Ps, taking time O(k?logk). Thus the total cost P(n)
at each stage equals P(n) = O(kn + mlogn + k?logk).
The total running time can be bounded by the recursion:
T(n) < maXo<k<a Pk)+Tk)+T(n—k—1). We
defined m to be the number of crossing extensions. Note
that when we find a crossing extension, we delete a point

114

from Pr and CH(Pg), which will never be inserted again.
Because we have at most n? extensions, the total num-
ber of crossing extensions that can occur over all stages
is at most n2. Thus, we can bound the total time spent
on visiting those edges by O(n%logn). For the com-
plexity that remains, we charge ¢(n) to each point of the
smaller subset of Ps, where c(n) = +O(kn + k%logk) =
£O(kn + knlogn) = O(nlogn). Every time an element
of the smaller set gets charged, the size of the smaller set has
at least been halved. Therefore the total charge on a single
element can be bounded by: c(n) + c(}) +c(}) +--- =
nlogn + (3)log(%) + (§)log(%) +--- = O(nlogn). In
total we have charged O(n? logn) time.

Adding the O(n? log n) time needed to visit all crossing ex-
tensions and the O(n2logn) time to build our initial data
structures, results in a total running time that can be bounded
by O(n?logn). o

Given the method presented above, it can be proved that it
will always find a perfect binary space partition whenever
such a partition exists.

Theorem 2.6 The scheme described above outputs a perfect
binary space partition if it exists, and reports its non-existence
otherwise.

Proof: If there exists a perfect binary space partition for a
set of line segments, then there is a line that divides the set
of line segments in two nonempty and disjoint subsets: the
first line used in the partition. Observation 2.3 states, that
as long as there are any such partition lines, they are found
by our algorithm. As stated by Lemma 2.4, we may at each
stage choose our partition line from all lines available, be-
cause for any subset of our set of line segments the existence
of a perfect binary space partition is assured. As soon as
there are no more lines available, we are finished or report
the non-existence of a perfect binary space partition for this
set of line segments. 0O

We applied our scheme to a set of disjoint line segments. We
will now extend it to other disjoint convex objects. Observe
that each partition line ¢ of a set S of convex objects that does
not intersect any of the objects of S, can be rotated slightly
until it touches two objects of S, each at a side. We call the
line segment defined by the two points, in which £ touches an
object, a tangent edge. Let the structure containing all these
tangent edges be called a tangent visibility graph. Using the
following observation, we can apply our scheme also to other
sets of objects:

Observation 2.7 If-a line exists that partitions the set S of
convex objects in exactly two non-empty subsets, without

intersecting any of the objects of S, then there also exists
such a line that is the extension of an edge of the tangent
visibility graph of S.

Theorem 2.8 Assuming that the tangent visibility graph of a
set of n convex objects can be computed in time T'(n), then
finding a perfect binary space partition of this set of objects or
reporting its non-existence can be done in O(T (n)+n?logn)
time.

3 Conclusion

‘We presented a method that constructs a perfect binary space
partition of a set of non-intersecting line segments in the plane
or that concludes that no such partition exists for that partic-
ular arrangement. Our method runs in time O(n? logn). We
also proved the problem to be n2-hard.

Several questions remain open. First of all, it might be possi-
ble to improve our algorithm. It will be difficult however, to
obtain an o(n?) running time, since the problem is n2-hard.
Probably the most important open problem in this area still
is to (dis)prove the conjecture stated by Paterson and Yao in
[7]: for a set of n line segments in 2-dimensional space it is
always possible to find a binary space partition of size O(n).

References

[1] M. de Berg, M. Overmars, and O. Schwarzkopf. Computing
and verifying depth orders. In Proc. 8th Annu. ACM Sympos.
Comput. Geom., pages 138-145, 1992.

[2] H.Fuchs, Z. M. Kedem, and B. Naylor. On visible surface gen-
eration by a priori tree structures. Comput. Graph., 14(3):124—
133, 1980.

{31 A. Gajentaan and M. H. Overmars. n2-hard problems in com-
putational geometry. Technical Report RUU-CS-93-15, Dept.
of computer science, Utrecht university, 1993.

[4] J. Hershberger and S. Suri. Applications of a semi-dynamic
convex hull algorithm. In Proc. 2nd Scand. Workshop Algorithm
Theory, volume 447 of Lecture Notes in Computer Science,
pages 380-392. Springer-Verlag, 1990.

[5] M. H. Overmars and J. van Leeuwen. Maintenance of configu-
rations in the plane. J. Comput. Syst. Sci., 23:166-204, 1981.

[6] M. H. Overmars and E. Welzl. New methods for computing
visibility graphs. In Proc. 4th Annu. ACM Sympos. Comput.
Geom., pages 164—171, 1988.

[71 M.S.Paterson andF. F. Yao. Efficient binary space partitions for
hidden-surface removal and solid modeling. Discrete Comput.
Geom., 5:485-503, 1990.

[8] M. S. Paterson and F. F. Yao. Optimal binary space partitions
for orthogonal objects. J. Algorithms, 13:99-113, 1992.

