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Balanced Cuts of a Set of Hyperrectangles*
(Extended Abstract)

Viet Hai Nguyen** Thomas Roos** Peter Widmayer**

Abstract

We are given a set of n d-dimensional (possibly intersecting) isothetic hyperrectangles.
The topic of this paper is the separation of these rectangles by means of a cutting isothetic
hyperplane. Thereby we assume that a rectangle which is intersected by the cutting plane is
cut into two non-overlapping hyperrectangles. We investigate the behavior of several kinds
of balancing functions, as well as their linear combination and present optimal algorithms
for computing the corresponding balanced cuts in O(d n) time and space.

1 Introduction

Given a set of n d-dimensional (possibly intersecting) isothetic hyperrectangles, we consider the
problem of separating these rectangles by means of a cutting isothetic hyperplane. If the cutting
plane crosses a rectangle, this is cut into two non-overlapping hyperrectangles. We present
optimal algorithms for computing several kinds of “balanced cuts” in O(dn) time and space.
Thereby, the balance function can be defined in different ways, leading also to different optimal
partitions. We consider two important balancing strategies and their linear combination. First,
the balance of a partition is defined to be the maximum number of hyperrectangles on either
side of the cutting hyperplane after the split. We call the cut that minimizes this number the
so-called best balanced cut. In opposite to that, the second cutting objective is to minimize the
size of partitions, i.e. the total number of rectangles in the two subspaces. However, this second
balancing function is only useful when used in conjunction with some criterion that guarantees
the balance of the partition. Finally, we investigate optimal partitions with respect to balancing
functions which can be described as a linear combination of the two balancing functions above.
Our results include a generalization of recent results by [1] and [3].

A solution to this cutting problems has a number of applications, e.g., in the context of
binary space partitions, partition trees, computer graphics and solid modeling, VLSI design,
computer cartography and GIS, as well as geometric divide-and-conquer algorithms in many
variations (see, e.g., [2, 3, 4, 5, 6, 7, 8, 9]).

In [1], it was shown that there always exists a cutting hyperplane separating the set §
of n d-dimensional non-overlapping isothetic hyperrectangles into two sets each containing at
most [L‘;j}ln] hyperrectangles. Later, this result was extended to the more general case of
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overlapping rectangles by [3]. It was shown that there always exists a cutting plane which
creates two halfspaces with at most a = [2431(n — k)] + k rectangles on each side, under the
assumption of k-overlapping, i.e. at most (k + 1) of the rectangles in S are allowed to intersect
at a common point. Here, a problem is that the upper bound approaches n in the limit as d
increases, thus becoming an overestimated upper bound on the balance in general (not in the
worst case).

Using a different measure, namely the so-called profile k* of the scene which is defined to be
the maximum number of rectangles (minimized over all dimensions) that can be intersected by
a isothetic hyperplane, we obtain tighter bounds for the separation function above. Using this
new measure, we can prove the existence of a cutting plane which creates two halfspaces with
at most | 255" | rectangles on each side.

The paper is organized as follows. Section 2 introduces the necessary definitions. Afterwards,
in Section 3, we investigate best balanced cuts with the new profile factor thus improving the
results in [3]. Finally, Section 4 includes the second balancing function by considering linear
combinations of two balancing functions that maximize the balance of a partition and minimize
the number of intersected rectangles. Due to space restrictions, some proofs are omitted.

2 Preliminaries

At the beginning, we are given a set S := {R;,...,R,} of n (possibly overlapping) isothetic
hyperrectangles!
R; := [a1i,b1i] X . .. X [aqi, bai]

in d-dimensional real space IR%. Any isothetic hyperplane C (which can be regarded as some
degenerate isothetic rectangle) separates R? into two closed half-spaces.-Any rectangle R whose
interior is intersected by C is split into two non-overlapping parts corresponding to the respective
sides of C. More precisely, for any ¢ € ]a;,b;[, the hyperplane z; = c splits the rectangle
R = [a1,b1] X ... X [a4,bq] into two parts: Rjpy := [a1,01] X ... X [aj,¢] X ... X [aq,bq] and
Rpigh := [a1,b1] X ... X [¢,bj] X ... X [ag,bd]. So, any isothetic hyperplane C induces a partition
of S in the sense that some rectangles lie entirely on some side of the hyperplane while others are
intersected. Let C<, C> denote the sets of rectangles lying entirely in one of the two halfspaces
generated by the cut C, respectively, and let C= denote the set of rectangles intersected by C.
Now, it is desirable to obtain a cutting plane such that

(i) the number of rectangles after the split is as small as possible, or equivalently, the number
of intersected rectangles is minimized and

(ii) the difference of the numbers of rectangles on both sides of the cutting plane is minimized.

Formally, we define the minimum intersection cut as a cut minimizing the following sum:
Zo = [C<|+C?| +2+|C7|

where |C| denotes the cardinality of the set C. Note that, since for an arbitrary cut C we have
|C<| + |C?| + |C7| = n, minimizing T¢ is equivalent to minimizing the number of intersected

1For the sake of simplicity, we often refer to hyperrectangles (hyper-planes) simply as rectangles (planes
respectively), implicitly assuming that we always talk about scenes in d-dimensional real space, except when it is
explicitly stated otherwise.
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rectangles |C=|. However, this minimum intersection cut will also lead to degenerate cuts since
E¢ = 0 outside the scene. Thus this balance function is only useful when applied in conjunction
with some other criterion that guarantees the balance of the partition.

In opposite to that, a best balanced cut is defined to be a cut which minimizes the difference
between C< and C?, i.e.
Ac =[l|C|=|C> ||

Thereby, ||z|| denotes the absolute value of z. In general, these two functions together cannot
always be minimized simultaneously. So, we propose a compromise, that is to look for an optimal
cut C which minimizes the weighted sum yX¢ + §A¢ for real positive parameters y and § (see
Section 4).

Let C; be an arbitrary isothetic plane normal to the j-th coordinate direction. We denote
by k; the maximum number of rectangles intersected by any such cut Cj, i.e. k} = maxg; |C5|.
Wlth that, the profile k* denotes the minimum over all £}, i.e. k* = mm{kl, kd} Let
{z1,.. zm} the ordered sequence of the elements of the multlset {aj1,...,8jn,bj1,. .., bjn}
deﬁned by the projections of the rectangles onto the j** coordinate du'ectlon 2 We abbrev1ate
this set by {z;}]*. For a cut C at coordinate z, let left(z) = |C<| and right(z) = |C>|. Notice
that unlike [1, 3] we do not assume the rectangles to be in general position.

3 The Best Balanced Cut

The first lemma of this section gives a general classification of the best balanced cut for non-
general position scenes.

Lemma 1 Given a set S of n possibly overlapping segments on a real line, let m denote the
mazimum number of coinciding end points. Then, we can always find an interval (%,,%2) such
that any cut C at z € (Z1,Z;) satisfies Ac < m/2.

Notice that in the case of disjoint endpoints, we obtain m = 1 and, with that, the existence
of a sub-interval where left(z) — right(z) < 1/2 or equivalently left(z) — right(z) = 0. Our
first theorem now provides an upper bound on the balance of the best balanced cut.

Theorem 1 Given a set of n possibly overlapping isothetic rectangles in d-dimensional real
space, there always ezists a cutting plane which creates two halfspaces with at most a* = L%J
rectangles on each side.

The following lemma relates the k-overlapping factor of a rectangular scene with the defini-
tion of the “profile” k* of the scene.

Lemma 2 Given a set of n k-overlapping rectangles in d-dimensional real space, then the fol-
lowing inequality holds:
(d=1n+k

d

%In the following, we consider all coordinate directions separately.

k<k* <
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Using this, we prove that in general (not in the worst-case) the upper bound a* is tighter
than the upper bound a, i.e. we have :
" <a

Indeed, it is easy to produce examples showing that in many cases a* can be considerably smaller
than a. Thus the profile of the scene entails a better bound on the balance that can be obtained
by the best balanced cut.

The proof of Theorem 1 gives rise to an O(dn) algorithm to compute the best balanced
cut C or, more precisely, an interval which contains all best balanced cuts. (Note that there
may be infinitely many cuts which satisfy the balance condition). To do this, we have to find a
sub-interval I where Ay is minimal. Under the general position assumption, we obtain Ay = 0
in which case a simple O(dn) algorithm for the best balanced cut has been found (cf. [3]).
Notice that this algorithm can be easily extended to non-general position scenes by computing
the median of the multiset of projected endpoints.

Theorem 2 Given a set of n possibly overlapping isothetic rectangles in d-dimensional real
space, a best balanced cut can be computed in optimal O(dn) time and space.

A more careful investigation of the problem illustrates that the best balanced cut may in-
tersect a large number of rectangles thus creating an large size of the partition which is not
desirable in practice. To overcome this disadvantage, we discuss in the following section another
balance function which takes into account the balance and the size of the partition.

4 The Optimal Cut

In this section, we consider the question of satisfying the balance- and the minimum intersection
condition, as defined in Section 2, at the same time. In general, a solution that is optimal in
both respects does not exist. In other words, one can not always obtain an optimal cut Co
such that for all other cuts C, we have Ac, < Ac and Z¢, < Z¢. Nevertheless, we can make
a compromise between these two conflicting goals by considering the weighted sum of both
balancing functions. Formally, we define the optimal cut as the one minimizing the following
weighted sum
Xt =71Zc+ 6Ac

Thereby, v and § denote real positive parameters, with 4 + § = 1 without loss of generality.

Let us first investigate the case of 0 < ¥ < 1/2,i.e. § > 4. In other words, we favor the
balance condition over the minimum intersection condition. For that, we look at the function
¢ in more detail.

g = vllcsi+Ic?+2c=]] + éfic<|-1c>| 1)

Now, we distinguish two cases:
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Case 1 : |C<| > |C?]

Substituting 6 = 1 — v in equation (1) and using the fact that |C<| + |C>| + |C=| = =, we
obtain:

Iz = 2yn+(1-29)IC%|-|C?|

As 29n is constant and (1 — 2y)|C<| — |C>| is monotonously increasing for increasing z-values
of the cut C, with 0 < v < 1/2, ¢ is minimized if C is taken at the left end of the domain
|C<| > |C*|. More precisely, it may happen that the condition |C<| > |C™| creates an open
interval. In that case, we take a cut which lies arbitrarily close to the left end of the interval.

Case 2 : |C<| < |C?]
Analogously, equation (1) can be reduced to

St = 2ym+(1-29)[C%-|C<]

Again 27n is constant and (1—27)|C>|—|C<| is monotonously decreasing for increasing z-values
of the cut C, with 0 < v < 1/2. Thus, X% is minimized if C is taken at the right end of the
domain |C<| < |C>].

In both cases, we see that the minimization of I} is equivalent to the computation of
the interval that minimizes |||C<| — |C?|||. After that, one of the “endpoints” of this interval
minimizes the function XF,.

Let us now discuss what happens in the case of 1/2 < y < 1, i.e. § < vy, where the minimum
intersection condition dominates the balance condition.® In this case, we obtain non-monotonous
functions £f. In order to compute a minimum of the function If,, we first sort the coordinates
of the endpoints in ascending order (for each dimension separately) and compute the entire
function £F. This can be done using O(d n log n) time and O(d n) space. Up to now, it is an
open problem if this running time can be improved.

Theorem 3 Given a set of n possibly overlapping isothetic rectangles in d-dimensional real
space, an optimal cut with respect to the weighted sum g = yX¢ + 6A¢, for v < 6, can be
found in O(dn) time and space. In the case of v > §, the function =% can be minimized in
O(dn logn) time and O(dn) space.

5 Conclusion and Generalizations

Our approach can be generalized to more general classes of objects, e.g. convex objects. In this
case, our algorithm and all investigations of the best achievable balance apply to the bounding
bozes of the objects, as well. All we have to demand to preserve our runtime and space bounds
is that the boundaries of the bounding boxes of the objects can be computed in O(d) time, each.
In contrast, in our general case, no corresponding results are known if we drop the restriction
that the cutting hyperplanes be isothetic.

3Notice that in the case of y =1 and § = 0 an “optimal solution” consists of a cut outside the scene which
can be found in O(n) time.
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