139

Optimal Slope Selection via Expanders*

Matthew J. Katz!

Abstract

Given n points in the plane and an integer k, the slope
selection problem is to find the pair of points whose con-
necting line has the k-th smallest slope. (In dual setting,
given n lines in the plane, we want to find the vertex of
their arrangement with the k-th smallest z-coordinate.)
Cole et al. [6] have given an O(nlogn) solution (which
is optimal), using the parametric searching technique
of Megiddo. We obtain another optimal (deterministic)
solution that does not depend on parametric searching
and uses expander graphs instead. Our solution is some-
what simpler than that of [6] and has a-more explicit
geometric interpretation.

1 Introduction

In this paper we consider the slope selection problem,
as defined in the abstract. For convenience, we prefer
to study its dual version. We thus have a collection £ =
{41,...,£,} of n lines in the plane, which we assume to
be in general position, meaning that no line is vertical,
no two lines are parallel, no three lines are concurrent,
and no two distinct pairs of lines intersect at points
that have the same z-coordinate. We are also given an
integer parameter 1 < k < (g), and our goal is to find
the vertex of the arrangement A(L) of £ that has the
k-th smallest z-coordinate.

This problem was studied by Cole et al. [6], who de-
veloped a fairly complicated O(nlogn)-time solution,
which is optimal. Their algorithm is based on the para-
metric searching technique of Megiddo [14]. In the con-
text of slope selection, this technique is based on an ‘or-
acle’ procedure that, given any vertical line = a, can
quickly compute the number of vertices of A(L) that lie
to the left of the line. There is a simple way to per-
form this task, in O(nlogn) time, by sorting the lines

*Work on this paper has been supported by a grant from the
Fund for Basic Research administered by the Israeli Academy of
Sciences. Work by the second author has also been supported by
NSF Grant CCR-91-22103, and by grants from the U.S.-Israeli Bi-
national Science Foundation, and the G.LF., the German-Israeli
Foundation for Scientific Research and Development.

tSchool of Mathematical Sciences, Tel Aviv University

tSchool of Mathematical Sciences, Tel Aviv University, and
Courant Institute of Mathematical Sciences, New York University

Micha Sharir?

by their intercepts with the line z = a, and by counting
inversions between the resulting permutation and the
similar permutation of the lines at £ = —co. The para-
metric searching approach then runs a (sequential sim-
ulation of a) ‘generic’ parallel sorting algorithm, which
attempts to sort the lines along the line z = a*, where
a* is the z-coordinate of the desired k-th leftmost vertex
vt, without knowing the value of a*. At each parallel
step we obtain a batch of comparisons between pairs of
lines. We compute the z-coordinates of all the intersec-
tion points between these pairs, and run a binary search
among them, using the oracle itself, to obtain a vertical
slab between two successive such z-coordinates which
is known to contain vy ; this allows us to determine the
output to each of the comparisons involved. We can
then proceed to the next parallel step. When the algo-
rithm terminates, we are left with a slab that contains
only the vertex vx and then we can easily retrieve that
vertex.

Naive implementation of this algorithm results in an
O(nlog® n) solution: Assume we use a parallel sorting
algorithm of depth O(log n) and O(n) processors. Each
parallel step requires O(logn) oracle calls, each cost-
ing O(nlogn), for a total cost of O(nlog’n). A stan-
dard trick due to Cole [5] improves this to O(nlog” n).
Roughly speaking, at each parallel step we perform only
a constant number of binary search steps. This of course
does not resolve all comparisons of this step, but it does
resolve a large fraction of them. With this delayed eval-
uation, each parallel step is now a mixture of many
stages of the original parallel sort. Cole shows that,
if we use a sorting network for the generic parallel sort,
and use a weighted scheme in the binary searches, where
the weight of an unresolved comparison increases expo-
nentially with the number of steps it is left unresolved,
the whole procedure does terminate after O(logn) new
parallel steps. Since each of these steps uses only a con-
stant number of oracle calls, the whole running time
improves to O(n log® n).

To recap, even to obtain only an O(nlog® n) so-
lution, we have to use rather heavy machinery—the
AKS sorting network [1] (the only known network with
the above performance characteristics), combined with
Cole’s technique; this already results in a fairly compli-
cated algorithm.

The final step of improvement is even more compli-

140

cated, because we can no longer afford to use the oracle
too many times—it is too expensive. Instead, one needs
to work with an approximate oracle, that counts the
number of desired permutation inversions only approx-
imately, with an error that keeps getting smaller and
smaller as we get closer to the desired vertex vx. Cole
et al. give a fairly complicated technique for doing just
that, thus obtaining their optimal solution.

A close inspection of the approximate counting
scheme of [6] reveals that it is rather independent of
the parametric search itself. More precisely, it main-
tains, along each vertical line A bounding the current
slab, a partition of the set of intersection points of the
lines with X into blocks of some fixed size ¢; the blocks
are ordered along A but the lines within a block may not
be ordered. Using such a partition, Cole et al. manage
to count, in linear time, the number of vertices of A(L)
to the left of A, with an additive error of O(ng).

The scheme uses three main procedures: (i) Generate
a similar partitioning along a given line lying within the
slab (at which we want to make an oracle call); (ii) Re-
fine the granularity of the partition (halve each block
into two sub-blocks), so as to roughly halve the error
in the inversions counting; (iii) Approximately count
the number of vertices of A(L) within a slab bounded
by two partitioned borders. Overall the procedure per-
forms O(logn) refinements, and O(log n) partitionings
and countings (because the technique of [6] generates
only O(log n) oracle calls). Each partitioning, counting
and refinement takes only linear time.

The important observation is that if we replace the
parametric searching of [6] by any other kind of search-
ing over z-coordinates, so that it generates only O(log n)
oracle calls, we can replace the exact counting oracle by
the above scheme, and obtain a procedure whose cost is
only O(nlogn). (We assume here that the residual cost
of the search, excluding oracle calls, is only O(nlogn);
this is indeed the case in [6] and in our approach.)

Since the appearance of [6], several attempts have
been made to obtain simpler solutions. Last year,
Chazelle et al. [4] have proposed an alternative ap-
proach to parametric searching in geometric optimiza-
tion. They have applied it only to the slope selection
problem and obtained an O(n log® n) (deterministic) so-
lution. Their technique is based on epsilon-nets and on
recent related partitioning techniques (called cuttings).
This solution is suboptimal, but it is conceptually sim-
pler than [6]. Still, it requires the computation of e-nets
and of cuttings for arrangements of lines, which is by
no means an easy task. By the observation just made,
the running time of this algorithm can be improved to
O(nlogn), by replacing the oracle calls by calls to the
approximating oracle reviewed above (this observation
was missed in [4]).

" Another alternative approach has recently been pro-

posed by Matousek [12] and by Dillencourt et al. [7].
This approach is based on randomization; it generates
a small number of random vertices of the arrangement,
and runs the usual binary search to locate ¢* among
these vertices. Then it generates a new set of random
vertices, all within the restricted slab where v is now
known to lie, runs a second binary search, and contin-
ues in this manner until v; is found. The algorithms of
[7, 12] have expected running time O(nlogn), although
they use a fairly large amount of random bits.

In this paper we propose another approach to the
slope selection problem. Our approach is based on ez-
pander graphs that are constructed on certain subsets
of the given lines. Since expanders can be constructed
in an explicit deterministic manner (see e.g. [3] and be-
low), our technique is deterministic. It is conceptually
simpler than the other deterministic techniques, does
not require parallelization, and has a very clear geo-
metric interpretation. Its analysis relies on a simple and
known property of (certain kinds of) expanders, which
states, loosely, that for any pair of sufficiently large sets
of vertices the expander contains sufficiently many edges
between them. There are only a few applications of ex-
panders to geometric problems, such as the recent ap-
plication of Ajtai and Megiddo of expanders to parallel
linear programming [2] (our solution exploits some ideas
developed in that paper). We hope that our study will
lead to further geometric applications of expanders. We
remark that a different approach to parametric search-
ing via expanders has recently been developed by the
authors [9]. It applies to more general problems in geo-
metric optimization, but for the slope selection problem
it only yields an O(nlog® n) algorithm.

The paper is organized as follows. In Section 2 we
review expander graphs and their basic properties. In
Section 3 we describe applications of expanders to ar-
rangements of lines in the plane, obtaining a decom-
position theorem that extends and somewhat improves
similar results of [2] and may be interesting for its own
sake. In Section 4 we present our slope selection algo-
rithm, and conclude the paper in Section 5 with a brief
discussion of our results and some open problems.

2 Expanders and Their Proper-
ties

Definition 2.1 A graph G = (V,E) is an (n,d,c) ez-
pander if it has n vertices, its degree is d, and for ev-
ery set of vertices W C V of cardinality |W| < n/2,
IN(W)| > c|W|, where N(W) is the set of vertices in
V \ W that are connected to W by an edge of G.

The following property is proved in [3, Chap. 9, Corol-
lary 2.2]:

Lemma 2.2 If G is a d-regular graph with n vertices
and X is the second largest eigenvalue of the adjacency
matriz of G, then G is an (n,d,c) ezpander with ¢ =
(d—A)/2d.

Thus, if A is much smaller than d (which is clearly the
largest eigenvalue of the adjacency matrix of G), then
G is a good expander.

Lubotzky, Phillips and Sarnak [10] (and indepen-
dently Margulis [11]) have given an explicit descrip-
tion of a d-regular graph G with n vertices for which
A<2yd-1,forany d=p+1and n=gq+1, where p
and g are primes congruent to 1 modulo 4. These graphs
actually have the stronger property that all their eigen-
values (except d) have absolute value at most 21/d — 1.
We will refer to such graphs as LPS-expanders.

From the description' in [10] it follows that whenever
d is a constant, an LPS-expander of degree d with n
vertices can be constructed deterministically in O(n)
time.

The following lemma, which is the main property of
LPS-expanders that we will need in this paper, is proved
in [3, Chap. 9, Corollary 2.5]:

Lemma 2.3 Let G = (V, E) be a d-regular graph withn
vertices. Assume the absolute value of all its eigenvalues
but the largest is at most X. Then, for every two sets
of vertices, A and B, of respective cardinalities a and
b, we have |e(A, B) — abd/n| < AVab, where e(A, B) is
the number of edges of G connecting a vertex of A with
a vertex of B.

Corollary 2.4 If G is an LPS-ezpander of degree d
with n vertices, and A and B are two sets of vertices of
respective cardinalities a and b, such that ab > 9n?/d,
then e(A, B) > 3n.

Proof. The previous lemma, and the fact that A <
2V/d, imply that e(4, B) > abd/n — 2v/abd > 3n, as is
easily verified. O

3 Arrangements of Lines and
Expanders

In this section we derive several geometric results that
relate expanders to arrangements of lines in the plane.
Let £ = {¢1,...,£,} be a set of n lines in the plane in
general position (as defined in the Introduction), and let
A(L) denote the arrangement of L, that is, the planar
subdivision formed by drawing the lines in £ (see [8] for
more details concerning arrangements).

A basic step in our algorithms is to construct ex-
panders whose vertex sets are certain subsets of £. In

141

this section we derive several properties possessed by
such expanders. Let r be a sufficiently large constant
integer, and let d be the smallest integer such that
d = p+ 1, where p is a prime congruent to 1 modulo
4, and d > 9r®. Let G be an LPS-expander of degree d
whose vertex set is L.

(Technically speaking, the size of the vertex set of
such a graph has to be of the form ¢ + 1, where q is
a prime congruent to 1 modulo 4; thus we let n’ be
the smallest integer of this form which is greater than
or equal to n, construct an LPS graph G’ on a vertex
set V' of size n’, map V' onto £ by mapping the i-th
element of V' t0 £i(modn)+1, and let G be the graph
induced by that mapping. It is easily seen that, up to
(small) constants of proportionality, the resulting graph
obeys properties similar to those stated in Section 2. For
convenience, and with no real loss of generality, we will
assume that G behaves exactly as asserted in Section 2,
and ignore this technical issue in what follows.)

With each edge e of G we associate the point of in-
tersection between the two lines connected by e (which
is a vertex of A(L)). This yields a collection of O(nd)
vertices of A(L), to which we refer as ezpander points.
We partition the plane into O(d) vertical slabs, each
containing at most n expander points, and enumerate
the slabs in increasing left-to-right order.

Let 0 : u < z < v be one of these slabs. Let U
(resp. Vi) denote the set of the k lowest lines along the
left (resp. right) border of the slab.

Proposition 3.1 (cf. also [2]) For each 1 < k < n, the
size of the symmetric difference (Ur \ Va) U (Vi \ Ux) is
at most 2n/r.

Proof. Suppose to the contrary that |(Ux \ Vi) U (Vi \
Uk)| > 2n/r. Since |Ui \ V| = |Vi \ Uk|, the size of
both sets must be greater than n/r. It is easy to check
that every vertex of A(L) formed by a line in Uy, \ Vi
and by a line in Vi \ U ‘must lie in the slab ¢. By
Corollary 2.4, at least 3n edges of G connect between
the sets Uy \ Vi and Vi \ Ux. Thus o contains at least
3n expander points, contrary to the construction of the
slabs. O

Lemma 3.2 The slab o can be partitioned into r trape-
zoids, all incident to the left and right boundaries of o,
so that each trapezoid is intersected by at most 3n/r
lines. The partitioning can be performed in O(n logr)
time, and also yields, within the same time bound, the
subsets of the lines intersecting each trapezoid.

Proof. We partition £ into r subsets, L;,...,L,, so
that each set contains n/r lines, and, for any i < r,
any line in L; lies at z = u below any line in Lity. This

142

S
/\\
I\

|

—_F . R
. L1 /’ Tl ><\ !

n expander points

%

Figure 1: The trapezoidal partitioning of Lemma 3.2

partitioning can be done in time O(n logr), by repeated
median finding. Similarly, we partition £ into r equal
subsets, Ry, ..., R,, according to the permutation of the
intercepts of lines of £ along the vertical line z = v. For
each ¢ < 7 we draw a line segment s; connecting a point
on the left border of o, which separates the intercepts
of the lines of L; with that border from the intercepts
of the lines of L;4;, with a similar point on the right
border separating between the intercepts of R; and of
Ri4+1. This yields a partition of o into r trapezoids,
Ty,...,T;, ordered in increasing y-order (the topmost
and bottommost of these regions are unbounded, but we
will refer to them also as trapezoids). Each trapezoid
has two left and right vertical edges (contained in the
border lines of o), and a top edge and a bottom edge
(one of which may be missing). See Figure 1 for an
illustration.

We claim that each trapezoid T; is intersected by at
most 3n/r lines. Indeed, the left edge of T; is crossed by
n/r lines, by construction, and the same holds for the
right edge. We claim that at most 2n/r lines cross the
bottom edge s;—;. This follows by observing that each
such line must belong to (U \ V&) U (Vi \ Ux), where
k = (i—1)n/r, so the claim follows from Proposition 3.1.
An identical argument shows that at most 2n/r lines
cross the top edge s;. We thus obtain at most 6n/r
crossings between the lines of £ and the boundary of
T;, and since each line that crosses T; has two such
boundary crossings, the claim follows.

Concerning the time bound asserted in the lemma,
we already argued that the partitioning of o into these
trapezoids can be done in time O(nlogr). Next, for
each line £ € £, we locate the trapezoid T; whose left
edge is crossed by £ and the trapezoid T, whose right
edge is crossed by £. Then £ crosses exactly those trape-

zoids that lie between T; and 7, and we add £ to the
lists of these trapezoids. Clearly, all this can be easily
done in time O(nlogr). O

By estimating the number of vertices of A(L) within
each trapezoid, and multiplying by r, we easily obtain:

Corollary 3.3 The number of vertices of A(L) within
such a slab is less than 9n2/2r.

The following partitioning theorem is obtained by ap-
plying Lemma 3.2 to each of the O(r?) vertical slabs.

Theorem 3.4 The plane can be partitioned into O(r3)
‘vertical trapezoids’ (each having two vertical edges), so
that each trapezoid is intersected by at most 3n/r lines.
The partitioning can be performed in O(nr?logr) time,
and also yields, within the same time bound, the subsets
of the lines intersecting each trapezoid.

4 An Optimal Slope Selection
Algorithm

In this section we present our slope selection algorithm.
We do it in two stages: First we describe a simple ver-
sion that runs in time O(nlog? n) time, and then we
plug into it the approximate counting scheme of [6], re-
viewed in the Introduction, to obtain the optimal solu-
tion. Our O(nlog”n) version is similar in spirit to the
algorithm of Chazelle et al. [4], with the main difference
that we use expanders, instead of the e-nets used in [4],
to compute certain partitionings that are required by
the algorithm.

Let £ and v; be as in the Introduction. We ‘zoom in’
on v in O(log n) stages. At the beginning of the (j+1)-
st stage, j > 0, we will have already found a vertical
slab o = [u;, v;] which contains only O(n?p?) vertices
of A(L), including v, for some constant p < 1. We will
have also found a (partial) partitioning 7¢) of o; into
t; ‘vertical trapezoids’ (each having two vertical edges),

Tl(j), e ,Tg), and t; corresponding non empty subsets
of £, denoted £(1j U £§Z), where E,(j) is the subset of
lines of £ that cross T}(j) (we call it the crossing list of

T}(j)), such that the following properties hold, for some
constant parameter r:

M) U; £ = £;
(i) |£$‘i)| <¥¥n/ri fori=1,...,t;
(iii) 5L, 1£{] < 3n; and

(iv) for every vertex p of A(L) that lies in o}, there
exists an index 1 < ¢ < t; such that the two lines

meeting at p belong to £§j),

Property (iv) is a consequence of the definition of the
sets ,C,(-’) in terms of a partitioning of ¢; into trapezoids
(the partitioning does not necessarily cover all of o,
but it covers all the vertices of A(L) within o, as will
follow from the construction given below).

Note that properties (ii) and (iii) imply that the num-
ber of vertices of A(L) within o; is at most

t: . 1 .
ZJ ICE])I 1) EJ: () 3 ¥n?
< —max \ . \ < = "
(9 = 97 I] l po ' 3 | =9 i

i=1

We initialize the algorithm by setting o =
(—00,400), to = 1 (so the partitioning of o consists
Jjust of itself), and thus £§°) = L. Properties (i)-(iv)
clearly hold at this stage.

We now describe the j-th stage. For each i =
1,...,t_1, let GEJ_I) be an LPS-expander of degree
d ~ 9r? over the vertex set L9 ™V; put m; = 181,
for i = 1,...,¢;_;. The number of edges in G¥ ™V is
O(m;r?). Thus, by property (iii), the total number
of edges of all expanders constructed in this stage is
O(nr?).

First, here is a brief outline of the j-th stage. We
first refine the partitioning 70U~ of o;_; by cutting
each of its trapezoids into a constant number of smaller
(vertical) trapezoids that are each crossed by at most
3n/ri lines of £. Let T7() denote the resulting finer
partitioning of o;_,, after removing all new trapezoids
whose crossing lists are empty. Obviously, properties
(1), (ii), and (iv) now hold for the collection of crossing
lists of the trapezoids of 7() (with j instead of j — 1),
but property (iii) may fail to hold—the sum of the sizes
of the crossing lists is still linear, since each trapezoid
of TU~=1) was divided into a constant number of smaller
trapezoids, but the constant may be larger than 3. We
enforce property (iii) by narrowing the slab associated
with 7G) (i.e., oj_1), and restricting 7G) to the re-
su(l!;)ing narrower slab, which we denote by o, to obtain
TU),

We next describe in more detail the two main com-
ponents of the j-th stage, i.e., constructing 70), and
computing o;.

To obtain a new partitioning TG from T G-1), let
T9~Y be a trapezoid of TG-1) (T9~Y is either a ver-
tical trapezoid or a degenerate vertical trapezoid, i.e., a
‘vertical triangle’ with one vertical side). Let P,-(’ ™D de-

note the set of expander points of GE’ Y that fall within
the vertical slab determined by the two vertical edges
(or, in case of a triangle, one vertical edge and the oppo-
site vertex) of ’I;-(j . We partition this slab into O(r3)
vertical trapezoids (namely, O(r?) vertical sub-slabs x
r trapezoids per slab), as in Theorem 3.4. The number

of Iines of Esj -1 (and thus of £) crossing each of the re-

143

sulting trapezoids is at most 3L ~)|/r < 3in/ri. The
contribution of TU ™) to the partitioning 70 consists
of the portions of the resulting trapezoids that are con-
tained within T ~%). Each of these portions is then cut
(if necessary) into at most three vertical trapezoids or
triangles (by adding at most two vertical edges from ap-
propriate points on the top or bottom edges of Ti(J _1)),
and only those trapezoids with non empty crossing lists
are retained. This portion of the j-th stage takes only
linear time.

As to the second component, modifying the terminol-
ogy of [4], define a critical point to be an intersection
point between a line of £ and an edge of some trape-
zoid of 7). The number of critical points is clearly
linear, since it is at most twice the sum _of the sizes
of the crossing lists of the trapezoids in 7(). More-
over, it is trivial to obtain the critical points from all
the crossing lists, in linear time. Divide oj—1 into a
constant number of vertical sub-slabs, each containing
at most n critical points. (Note that along any verti-
cal line in the interior of oj_; the number of critical
points is at most n.) Now use the inversion-counting
oracle (or its approximating counterpart—see below),
to perform a binary search among these sub-slabs, to
determine which of them contains v;. Denote that slab
by o, and restrict 7U) to o; to obtain 7(). Note that
this last step does not increase the number of trape-
zoids; on the contrary, some of the crossing lists of the
shrunken trapezoids may now be empty, in which case
we remove these empty trapezoids from 7). Note that
the number of critical points on the borders of o; is ex-
actly 2n. Thus the total number of critical points in o;
is at most 3n which implies property (iii). The cost of
this part of the j-th stage is dominated by the cost of
the oracle calls, which is O(nlogn) (if we use the exact
oracle, since there are only a constant number of calls
in each stage).

Thus after ¢t = O(logn) stages we are left with a slab
o containing v, with an associated partial partitioning
of o; into trapezoids, each crossed by only a constant
number of lines. We can thus afford to compute, by
brute force, all intersection points within each crossing
list. The union U of these collections of intersection
points, whose size is only O(n) (by Property (iii)), gives
us all the vertices of .A(L) within ;. Moreover, we
know from the oracle calls how many vertices of A(L)
lie to the left of oy, so we know the rank of v; within
U, and we can thus find v; using a final linear-time
selection algorithm. Since there are O(log n) stages and
each takes O(nlogn) time, the entire algorithm takes
O(nlog? n) time.

As observed in the Introduction, since our algorithm
generates only O(logn) oracle calls, we can plug into it
the approximate counting scheme of [6], as described in

144

the Introduction, to obtain an optimal O(n logn) solu-
tion.

5 Conclusion

In this paper we have presented a new optimal slope
selection algorithm, which is based on expander graphs.
The method is deterministic, avoids the use of para-
metric searching (and thus also the need to use com-
plex parallel and generic sorting schemes), and has a
clear and explicit geometric interpretation. Since all
known optimal deterministic solutions to this problem
require the use of the approximate counting scheme of
[6], it is best to compare the various approaches in terms
of their O(nlog?® n) versions, where this scheme is not
used. We feel that our solution is the simplest and easi-
est to implement—the algorithm is straightforward, and
requires no special techniques or data structures. The
most involved part of the algorithm is a median-finder,
which is needed for partitioning the current slab into
sub-slabs, and for decomposing a slab into trapezoids.

The slope selection problem has been identified as
one of the simplest problems in computational geome-
try that requires the use of parametric searching, which
is one of the reasons for the attention that this prob-
lem has received. Our algorithm shows that paramet-
ric searching can be replaced by an ‘expander-guided’
search, resulting in a considerably simplified approach.

Among the open problems that this paper raises, we
would like to mention that of finding a simpler approxi-
mate counting scheme (for the number of vertices of an
arrangement of lines to the left of a query vertical line)
than the one given in [6]. Another direction for further
research is to find other applications and extensions of
Theorem 3.4. Essentially, the partitioning described in
Section 3 is a 1/r-cutting of A(L) (in the sense of [13]),
but the number of its trapezoids is O(r3) rather than
the optimal number O(r?). Since we need only the sub-
set of trapezoids within a single vertical slab, this does
not cause any problems for our algorithm (the same ap-
plies to the algorithm of [2]). Can expanders be used
to obtain cuttings of smaller size, by algorithms that
are simpler than those currently known for that prob-
lem? We remark that Theorem 3.4 can be extended to
higher dimensions, to yield 1/r-cuttings, unfortunately
of suboptimal size, for arrangements of hyperplanes in d
dimensions. As an application, we can extend our tech-
nique to solve the ‘slope-selection’ problem in higher di-
mensions: Given an arrangement of n hyperplanes in d-
space, and a parameter k, find the vertex of the arrange-
ment with the k-th smallest z;-coordinate. The running
time of the resulting algorithm is close to O(nd—1).

Acknowledgement

We thank Noga Alon for several helpful discussions con-
cerning expanders and their applications.

References

[1] M. Ajtai, J. Komlés and E. Szemerédi, An O(n log n)
sorting network, Combinatorica 3 (1983), 1-19.

[2] M. Ajtai and N. Megiddo, A de
terministic Poly(log log n)-time n-processor algorithm
for linear programming in fixed dimension, Proc. 24th
ACM Symp. on Theory of Computing, 1992, 327-338.

[3] N. Alon and J. Spencer, The Probabilistic Method,
Wiley-Interscience. New York, 1992.

[4] B. Chazelle, H. Edelsbrunner, L. Guibas and M.

‘ Sharir, Diameter, width, closest line-pair, and para-
metric searching Proc. 8th ACM Symp. on Computa-
tional Geometry, 1992, 120-129.

[5] R. Cole, Slowing down sorting networks to obtain
faster sorting algorithms, J. ACM 34 (1987), 200-208.

[6] R. Cole, J. Salowe, W. Steiger and E. Szemerédi, Op-
timal slope selection; SIAM J. Computing 18 (1989),
792-810. - .

[7] M.‘Dillencourt, D. Mount and N. Netanyahu, A ran-
domized algorithm for slope selection, Int. J. Comput.
Geom. and Appls 2 (1992), 1-27.

[8] H. Edelsbrunner, Algorithms in Combinatorial Geom-
etry, Springer-Verlag, Heidelberg, 1987.

[9] M. Katz and M. Sharir, An expander-based approach
to geometric optimization, Proc. 9th ACM Symp. on
Computational Geometry, 1993, 198-207.

[10] A. Lubotzky, R. Phillips and P. Sarnak, Explicit ex-
panders and the Ramanujan conjectures, Proc. 18th
ACM Symp. on Theory of Computing, 1986, 240-246.
See also: Ramanujan graphs, Combinatorica 8 (1988),
261-277.

[11] G.A. Margulis, Explicit group-theoretical construc-
tions of combinatorial schemes and their applications
to the design of expanders and superconcentrators,
Problemy Peredachi Informatsii 24 (1988), 51-60 (in
Russian). English translation in Problems of Informa-
tion Transmission 24, 39-46.

[12] J. Matousek, Randomized optimal algorithm for slope
selection, Inf. Proc. Letters 39 (1991), 183-187.

[13] J. Matousek, Cutting hyperplane arrangements, Dis-
crete Comput. Geom. 6 (1991), 385-406.

[14] N.Megiddo, Applying parallel computation algorithms
in the design of serial algorithms, J. ACM 30 (1983),
852-865.

