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Abstract

We describe new lower bounds for the complezity of
the directed Hausdorff distance under translation and
rigid motion. We exhibit lower bound constructions of
Q(n?) for point sets under translation, for the Ly, Lo
and Lo, norms, Q(n*) for line segments under trans-
lation, for any L, norm, §2(n®) for point sets under
rigid motion and Q(n®) for line segments under rigid
motion, both for the Ly norm. The results for point
sets can also be exiended to the undirected Hausdorff
distance.

1 Introduction

The Hausdorff distance between two sets 4 and B
is defined as

H(A, B) = max(h(4, B), h(B, A))
where
h(A,B) = sup fnf la - b|

and || - || is some norm (here restricted to be some
L, norm). In this paper, A and B will be planar sets
consisting of either a finite number of points or a finite
number of points and non-intersecting line segments.

h(A,B) is called the directed Hausdorff distance
from the set A to the set B. H(A,B) is the undi-
rected Hausdorff distance between the sets 4 and B.
h(A, B) will be small exactly when every point in A
is close to some point in B; h(B,A) will be small
when every point in B is close to some point in A,
and H(A,B) will be small when both of these are
true. In particular, h(B, A) < € exactly when for any
b € B there is some a € A such that |la — b|| < e.
Let A* = A ® D(e) where D(e) is the “disk” of ra-
dius ¢ (the set of all points  such that ||z]| < €) and
® is the Minkowski sum. A key observation is that
h(B,A) < eiff B C A-.

In many problems, we want to determine the trans-
formation of one set which brings it into closest cor-
respondence with the other set. Let G be some group
of transformations. Then for any g € G define

Dg(g) = H(A,9(B)).

In other words, we transform the set B by some trans-
formation g and compute the Hausdorff distance be-
tween this transformed set and A. This defines a func-
tion of g, and we wish to determine the minimum value
of this function, as the transformation which gives rise
to this minimum value will be the one bringing B into
closest correspondence with A. Many approaches to
determining this minimising transformation are based
on searching the graph of this function (for example,
by enumerating the local minima, asin [5]). It is there-
fore of interest to know what the geometric complexity
of this graph may be. Upper bounds have been deter-
mined for some transformation groups, but few lower
bounds were known. We will also be considering the
graph of the function

dg(9) = h(9(B), A)

which is the graph of the directed distance from the
transformed set g(B) to A.

We will exhibit lower bounds for the complexity of
such graphs as follows. For each problem, we will fix
some values for € and n, construct sets A and B having
kn elements each, for some constant k¥ depending on
the problem, and show that the set {g|dg(g) < €} will
have Q((kn)') = Q(n') complexity, for some constant
| depending on the problem. We do this by showing
that this set has Q(n') distinct connected components.
Since each one must contain some local minimum of
dg(g), this shows that there are Q(n') local minima
in the graph of dg(g). In some cases, we also show
that the graph of Dg(g) may have this complexity.
Previous constructions, such as those in [4], have been
for the directed Hausdorff distance alone.

We also show that the constructions for the undi-
rected Hausdorff distance and the constructions for
the directed distance on which they are based may
have high complexity in a small space: for a fixed ¢, we
can make Dg(g) have Q(n!) complexity in an arbitrar-
ily small region of transformation space (i.e. this does
not depend on just shrinking €). This is motivated by
the observations in [2] and [6] that for some groups
G, if Dg(g) < €, then g must lie in a small region
in transformation space, and thus, if the undirected
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Hausdorff distance could have only small complexity
in a small area, we might be able to obtain efficient
algorithms, as was done in [6]. The lower bounds here
show that, in some cases, this is not possible. Ta-
ble 1 shows the problems for which we present lower
bounds, and the running times of the algorithms which
search their graphs. It can be seen that in most cases,
the running times are nearly tight. The exception is
the bound for point sets under translation with the L;
and Lo norms, in [4], where an algorithm was given
which uses the structure of the problem under these
norms to avoid explicitly searching the entire graph.

In this paper, we will be dealing with two transfor-
mation groups: the group T of translations and the
group R of rigid motions (translations and rotations).
Let ¢ be a translation and € an angle. Define

DT(t) = _H(AT, Br & t)

dr(t) = h(Bret,Ar)
DR(t, 0) = H(AR,Ta(BR) @t)
dr(t,0) = h(re(Br)®t,AR)

where r9(Bgr) denotes the set obtained by rotating By
by 6 counterclockwise about the origin.

2 Point sets under translation

This section describes two constructions of point
sets Ar, Br, each containing O(n) points, for which
the function Dr(t) has Q(n?) local minima within an
arbitrarily small area. The first construction is for the
L; or Lo, norm; the second is for the L, norm.

2.1 The L; and L, example

We use the Lo, norm throughout; rotating the point
sets by 45° gives the construction for L;.

Let Ar consist of two diagonal rows, each of n
points spaced o apart. The rows are 2¢ + § apart,
where 6§ < o/n. Ar and A% are shown in Figure 1(a).
The area uncovered by A% contains a “staircase” of
Q(n) steps, in the gap between the two sides. The
width of this gap is 6. Note that by reducing o, the
two rows can be compressed inwards, thereby making
the stairsteps (and thus the total length of the stair-
case) as small as desired.

Let Br consist of two diagonal rows of points as
shown in Figure 1(b). The points in each row are
slightly more than 6 apart, and are placed so that one
row lies around the horizontal part of a stairstep, and
the other lies around the adjacent vertical part.

Consider translating By slightly upwards or down-
wards. The points around the vertical stairstep will
remain inside A% or outside it, as they were before,
but the points around the horizontal stairstep will
move into and out of A7 as Br moves. Similarly,

as Br moves left or right, the points around the ver-
tical stairstep will move in and out of A%, but the
points around the horizontal stairstep will not. We
can thus see Q(n?) different configurations of Br with
respect to this one stairstep, since we can indepen-
dently choose where the gaps lie in the two rows of
Br. Br can also be translated so that it straddles
any of the other stairsteps, each of which gives rise to
Q(n?) configurations, for a total of Q(n3) configura-
tions.

Each one of these configurations can be labelled
with three numbers from 1 to n: the number of points
in the bottom row of Br that are to the right of the
gap, the number of points in the top row of Br that
are to the right of the gap, and the number of the
stairstep which is straddled by Br. We will only con-
sider configurations where there is at least one point of
each row of Br on either side of the gap. Q(n3) such
labels are possible. Suppose ¢; and ¢, are translations
representing configurations with distinct labels. Then
dr(t1) < € and dr(t2) < €, but any path from ¢; to
to must pass through a translation ¢ where dr(2) > e
either some point in one of the rows of By must cross
the gap, in which case dr(t) > € when ¢ is a trans-
lation placing that point inside the gap, or Br must
be moved so as to straddle another stairstep, in which
case again at least one point of By must move through
the gap. All these labels therefore label distinct re-
gions.

Another way to visualise this is similar to that
used in [4]: define S(Ar,¢,b) for some b € Br to
be A7 ® —b. Then t € S(Ar,¢,b) exactly when
b+t € A%. This set is therefore the set of all transla-
tions which map binto A%. Now define S(Ar,¢, Br) =
NbeBr S(Ar,€,b). Then t € S(Ar,e,Br) iff Br&®tC
A%, or Dr(t) < € S(Ar, ¢, Br) is therefore the set of
all translations ¢ which make h(Ar,Br ®t) < e.

We can construct S(Az,¢, Br) by making a copy
of A% for every point in By, translating these copies
and forming their intersection. Alternately, we can
consider making a copy of the complement of A%, for
every point in By, translating these copies, and form-
ing their union. This union will have a “hole” for ev-
ery connected component of S(Az, €, Br). Figure 1(c)
shows such a union. In this figure, each jagged line
represents the “gap” staircase of some translation of
A%. There are two sets of translations of this, corre-
sponding to the two rows of By. There are other parts
of the complement of A5 which have not been drawn
here, but they do not affect the Q(n®) holes shown
here.

We now note that § can be made as small as de-
sired, thereby narrowing the staircase gap, and the
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Problem Lower Bound Solution

Transformation | Set type | Norm Complexity Complexity
Translation Point Sets Ly, Lo, Q(n®) O(n?log” n) [4]
L, Q(n°) O(n°logn) [5]
Points and Segments | L;, Lo Q(n®) O(n*a(n)) [5]
L, Q(n?) O(n*log’ n) [1
Rigid Motion Point Sets L, || Q@5 O(n®log’n) [3
Point and Segments L, Q(n°) O(n®log®n) [3

Table 1: Results for the complexity of the Hausdorff distance between two sets of size n. The lower bound results for

point sets are for the undirected Hausdorff distance, and the results for sets of points and segments are for the directed ®

distance. The results for the undirected distance also show that this complexity can occur in arbitrarily small space.

(a)

Figure 1: The L, example for point sets under translation

staircase itself can be compressed as much as is de-

sired by reducing o. This means that we can compress
the Q(n®)-complexity region down into an arbitrarily
small area.

We would also like to show that the area where
Dz(t) < € can also have large complexity in a small

space. This can be done by augmenting Br so that

h(Ar,Br ®t) < € in the entire region of interest.
We set 0 < ¢/n so that the rows of Ar have length
less than ¢, and add two points to Bz, one in the
middle of each row of Ar. Then if the main body
of By is translated anywhere on the staircase, these
two extra points remain within (or close to) the rows
of A7. Since the rows have length less than e, there
is always some point of By within € of any point of
Ar, for any translation in the complex region. Thus,
H(Az, By ®t) > € exactly where h(Br®t, Ar) > € (at
least in this region of interest), and so has complexity
Q(n3); the region containing this complexity can be
made arbitrarily small.

2.2 The L; example

In this subsection, we show how the previous exam-
ple can be modified so that it works with the L, norm.
Here, Ar consists of two vertical rows of » points. The

points in each row are spaced o apart and the rows are
“staggered” by o/2 (see Figure 2(a)). The rows are
slightly less than 2¢ apart, so that the circles of A%
are § apart at their closest approach. The gap be-
tween the left and right sides is not of constant width
and has a complicated shape.

The set Br again consists of two rows of n points.
These rows are horizontal, and spaced ¢ /2 apart. The
points in each row are 26 apart. They are shown su-
perimposed on A% in Figure 2(b). The idea is that,
no matter what values o, € and n have, if § is small
enough, then it is possible to choose n; and 7, inde-
pendently, and position Br such that By C AS, there
are n; points of the top row on the left side of the gap,
and n; points of the bottom row on the left side of the
gap. This would give Q(n?) possible configurations of
Bz around a single “wobble” in the gap; as there are
(n) such “wobbles”, there would be Q(n3) different
configurations of Br with By C A%. A labelling argu-
ment, similar to that in the previous subsection, shows
that these configurations are all distinct.

- This is difficult to visualise, so again we will look
at S(Ar,¢, Br). We will construct this, as before, by
taking the union of O(n) copies of the “gap”, trans-
lated by various amounts, and showing that the com-
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(a) )

Figure 2: The sets Az, A% and By for the L, example

plement of this union has Q(n®) disjoint connected
components.

Since the actual gap has such a complicated shape,
we will deal only with a small part of it. In particular,
we will consider only the regions where the gap’s width
is between § and 26 (recall that 6 is the width of the
narrowest part of the gap). There are O(n) regions
where this is true, each one centred around a place
where the gap is at its narrowest. We bound each
such region by a rectangle. These rectangles will be
26 wide by A long, where ) is determined by e and
8, and is equal to v/4e6 — 62. Now, note that A/ =
+/4¢€/6 — 1. Thus, for any fixed ¢, we can make \/§ as
large as we like by making § small enough. This means
that the interesting sections of the gap can be made
arbitrarily “skinny”: as é decreases, the rectangles get
narrower and shorter, but their length to width ratio
(i.e. A/(26)) increases.

The gap is narrowest exactly where a line from one
point in the left row of Ay to one of its neighbours
in the right row crosses it. The interesting rectangles
are oriented perpendicular to such lines. There are
two sets of such rectangles, one “leaning to the left”
and the other “leaning to the right”. The angle be-
tween these two sets decreases as o decreases, but is
not significantly affected by §. Thus, for a fixed o (and
thus a basically constant angle), it is possible for one
left-leaning rectangle to intersect n right-leaning rect-
angles which are spaced 26 apart; this can be achieved
by making § small enough that \/§ is large.

We will be making n copies of the gap stacked 26
apart (corresponding to one of the rows of Br), and
having these intersect with another n copies, shifted
down by o /2 (corresponding to the other row), giving

Figure 3: The sets Az, A% and By for the line segment
example

O(n®) intersections: each left-leaning rectangle from
one of the copies intersects n right-leaning rectangles
from other copies, and vice versa.

Since A is a function of § and ¢, given values for
n, € and o, we can find a value for § such that there

are Q(n®) distinct regions in translation space where

dr(t) < e. These all lie in a space which is O(no)
high by O(né) wide, and so by a suitable choice of o,
this region of high complexity can be made arbitrarily
small.

As in Subsection 2.1, if no < ¢, we may augment
Br by two points, one each in the middle of the two
rows of Ar, such that h(Az, By ®t) < e for all transla-
tions in the complex region; this construction therefore
similarly shows that the-undirected Hausdorff distance
can have large complexity in a small area.

3 Sets of points and line segments un-
der translation

This section describes a construction of two sets
Ar and Br, each consisting of O(n) points and line
segments, for which the function Dr(t) = H(Ar, Br®
t) has Q(n*) complexity.

Let § < ¢/n. Now let Ap consist of a group of n
horizontal segments, each of length (n — 1)(2¢ + §),
spaced 2¢ + § apart, plus a similar group of n vertical
segments. A% then consists of n horizontal bars and
n vertical bars, with gaps of width § between adjacent
bars. Note that this is true for any L, norm: the caps
on the ends of the bars have different shapes for differ-
ent norms, but the main lengths of the gaps between
the bars have the same shapes. Now, let By consist
of a vertical row of » points, spaced 2§ apart, located
at the bottom-left corner of the group of horizontal
lines in Ap, plus a similar horizontal row located at
the bottom-left corner of the group of vertical lines.
Figure 3 shows Br overlaid on Ar and A%.

There are Q(n*) different configurations of Br with
respect to Ar: the vertical row of By can be placed
in any one of Q(n?) different configurations with re-
spect to the horizontal segments of Ap, as it can be



straddling any of the n — 1 gaps, and from 1 ton — 1
points can lie below the gap; similarly, the horizontal
row can be placed in any one of Q(n2) different config-
urations with respect to the vertical segments of Az.
Note that sliding Br horizontally does not affect the
configuration of the vertical row, and sliding it verti-
cally does not affect the configuration of the horizontal
row (as long as these rows remain within limits); the
configurations of the two rows may thus be chosen
independently, for a total of Q(n*) different configu-
rations. These are all clearly distinct, since any two
differ in the number of points of By contained in one
of the connected components of A%,s0 any path from
one configuration to another must contain a transla-
tion of Br where some point is crossing some gap.

4 Point sets under rigid motion

We will use the L, norm wherever we deal with
rotation, since it is the only rotationally symmetric
L, norm.

The following construction shows that there can be
©(n®) distinct connected components where the undi-
rected Hausdorff distance Dg(t,6) is less than ¢, in an
arbitrarily small region in (,6) space. It is based on
an augmentation of Ar and Br from Subsection 2.2.
First, note that it is possible to rotate Bz by some very
small angle 6, about its centroid while still main-
taining the Q(n®) complexity of h(Br @ t, Ar). This
is because there must be, in the Q(n®) arrangement of
connected components, some minimum distance be-
tween features, and so any rotation which does not
move any feature of the arrangement more than half
this distance cannot change the overall topology of the
arrangement.

The augmentation to Az consists of n points along
a vertical line, spaced less than €/(2n) apart. If we
put a disk of radius € about each, we will have a shape
with two “scalloped” edges, as shown in Figure 4(a).
We will refer to this row of points as 4 4.

Now, if A4 is located sufficiently far away from the
centre of rotation (and perpendicular to the line join-
ing it to the centre of rotation), then it is possible
to pass a circular arc (centred at the centre of rota-
tion) through the inner scalloped edge so that it passes
through each of the n lobes and the gaps between
them. It will not pass through these lobes evenly: it
will cut deeper into some of them than others. How-
ever, by moving the row farther away, we may control
the magnitude of this effect, since the arc approaches
a straight line. By slightly adjusting the radius of the
arc, we may also control the ratio between the arc
length contained inside the lobes and the arc length
contained in the spaces between the lobes. We will
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() - (b)
Figure 4: The sets A4 and A4

place A4 far enough away and position the circular
arc such that the ratio between the arc length con-
tained in any lobe and the arc length contained in the
space next to that lobe is greater than 4n : 1. Let the
shortest of the arc lengths contained in the lobes be
l, and the smallest depfh of any of the gaps be w (see
Figure 4(b)). i

We now construct B4, which consists of n points
positioned /(2n) apart along this circular arc, located
in the lowest lobe of A%. We also add a point to B,
located at the lower end of A4. Now, as B4 rotates
about the centre of rotation, this row of points will
move along this circular arc. Since the spaces between
lobes along this path are all less than I/(4n) across,
and the entire arc of points will fit into a single lobe,
only one point will be passing through a gap at a time,
and there will be (n?) different configurations of B4
with respect to this part of A4. Note that all of these
configurations have the property that all of the points
of A4 are within ¢ of some point of By, specifically
the extra point added at the end of the row.

We now construct Az and Br as in Subsection 2.2
so that the Q(n®) complexity region of Dr(t) is smaller
than I/(8n) high by w/2 wide, and so that the centroid
of Br is at the centre of rotation. Let Ap = Ar U Ay,
and B = Br U B4. Pick 0 such that the points
of B, are straddling one of the spaces between lobes,
and such that this straddling is “even”: the two points
closest to the gap are equal distances away from the
edges of the gap. Then, if |[#] < Oy, there are
Q(n?) different connected componentsin ¢ space where
Dg(t,0) < e. A labelling argument similar to that
in Subsection 2.1 now shows that there are Q(n’)
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different connected components in (¢,6) space where
Dg(t,6) < €, Q(n®) corresponding to each such value
of 8. A key point is that it is not possible for one of
the points of B4 to “sneak around” the space between
the lobes, since it would have to translate at least w
away from the original circular arc, which would force
at least one point of By to cross some gap. Further, by
reducing o and §, and by moving A4 and By4 farther
out, we can make the region in (¢,0) space in which
these connected components lie arbitrarily small.

There is a problem with this construction: A4 must
subtend an angle of less than 0,5, which depends on
o and 6, which depend on /' and w, which depend on
the circular arc along which B4 is placed, which will
have a larger radius for a smaller fy;,. However, as
A4 and B4 are moved farther out, ! and w approach
limit values, as the circular arc becomes closer to a
straight line. Thus, if we initially place the augmen-
tation where ! and w are within some small factor of
their limit values, then determine o and § which work
for any values of I and w between their original values
and their limit values, we can move the augmentation
out farther if necessary without affecting the validity
of the construction.

5 Sets of points and line segments un-
der rigid motion

This example is a modification of the example from
Section 3, using the techniques from Section 4. Again,
we observe that the set Br from Section 3 may be
rotated by some small angle 0, about its centroid
without changing the topology of the arrangement.

Define the centre of rotation to be the centroid of
Br. We augment Az by a group of segments A 4 iden-
tical to the left-hand group of Az, as shown in Fig-
ure 3. A4 is placed so that it subtends a total angle of
less than fnip to the centroid of Bz, and lies directly
to the right of it. Let Agp = Ar U A4 We also add
n points to By in a vertical row, in the same relative
position to A4 as the first vertical row of Br was to
the left-hand group of Ar. Call this new row B4 and
let Bg = Br U By4.

Now, any translation ¢ for which By &t € A% will
also have B @t € A%. Fix such a ¢ and consider val-
ues of 6 where |0| < Omin. As 6 changes through this
range, the points in B4 will sweep across the gaps in
A%. Their spacing is such that only one point will be
crossing a gap at a time. Thus, as we vary 0, the points
of B4 achieve Q(n?) different configurations with re-
spect to the gaps of A4. For this choice of ¢, there are
thus Q(n?) values of 6 for which dg(t,6) < e, since any
rotation in this range keeps r¢(Br) &t C A5. We can
choose ¢ to represent one of the Q(n*) distinct config-

urations of Br with respect to Ar, and so this gives
Q(n®) different configurations of B with respect to
the gaps of A% for which dgr(¢,0) < e. These con-
figurations are not connected in (¢,0) space, since any
path from one to another must cause at least one point
to cross some gap.

6 Summary

We have presented constructions which give lower
bounds on the complexity of the directed and undi-
rected Hausdorff distance in several different contexts.
Several of the constructions have shown that the di-
rected Hausdorff distance can have large complexity
in small space, and this observation has led to lower
bounds on the undirected Hausdorff distance.

The problems for which lower bounds on the com-
plexity of the undirected Hausdorff distance were not
shown were those involving sets of points and line seg-

‘ments. A remaining open problem is whether or not

such bounds are possible: is it possible for the undi-
rected Hausdorff distance under translation between
such sets to have large complexity in a small space?
If not, can this distance have any complexity greater
than Q(n®)? Also, is it possible to develop algorithms
such as those in [4] which find the minimum Haus-
dorff distance under the action of some transforma-
tion group without explicitly searching the graph of

the entire distance function? '
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