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Abstract

We describe an O(nlogn) algorithm for compulmg an area-optimal convex polygon that
intersects a set of parallel line segments. We also consider the problem of maintaining such a
minimum-area polygon when both insertion and deletion of line segments are allowed.

1 Introduction .

The problem of finding a set of necessary and sufficient ”local conditions” for the existence of a
transversal of a set of ovals (a closed, bounded and convex set) is a well-studied one in Combinatorial
Geometry. [HDK64], [GPW91].

Interest in the algorithmic aspects of this problem is however quite recent. Depending on the
type of the transversal and the set of ovals we get different variants of the basic problem.

O’Rourke gave an on-line algorithm for intersecting a set of parallel line segments by straight
lines [O’R81]). Computing transversals for a set of arbitrarily oriented line segments was discussed
by Edelsbrunner et al [EMP*82)].

Determining line transversals of more complex objects than line segments was studied by Edels-
brunner [Ede85]. Atallah and Bajaj gave a general technique for computing line transversals of a set
of objects requiring constant size storage description by tying up the problem with that of comput-
ing Davenport-Schnizel sequences [AB87]. This result was further generalised by Srinivasaraghavan
et al [SM92). Avis and Doskas [AD87], Avis and Wenger [AW89] studied the problems of computing
line transversals for lines, line segments and polyhedra in three and higher dimensional spaces.

Goodrich and Snoeyink were (probably) the first to consider the a different kind of transversal
than straight lines. They studied the problem of computing a convex polygon that stabs a set of
parallel line segments [GS90).

By defining a measure m on the class of transversal in question we get an optimisation problem.
An example is that of computing the shortest line segment that intersects a set of discs. Currently,
there are very few optimisation results. Lyons et al studied the problem of computing a minimum
perimeter convex polygon that intersects a set of isothetic line segments [LMR]. O(nlogn) time
algorithms for computing a shortest line segment that intersects a family of lines, a family of line
segments and finally a family of convex polygons were given by Bhattacharya et al [BCE*91].
Jadhav et al gave a linear time algorithm for computing a smallest radius circle that intersects a
set of convex polygons [JMB92].

In this paper we enlarge this set of results by solving the problem of computing a minimum
area convex polygon that intersects a set of parallel line segments. A line segment intersects a
convex polygon if it intersects the interior or the boundary of the polygon.

We also consider the dynamic version of this problem : maintain a minimum-area convex
polygon that intersects a dynamically changing set of line segments

The paper is organised as follows. In the next section we introduce some notations and defini-
tions. The static version of the algorithm is described in the third section. The following section
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Figure 1: Convex chains luc(S) and hdc(S) for a set of line segments.

contains an analysis of this algorithm. In the next section we take up the dynamic version of this
algorithm and analyse its complexity. In the fifth and last section we conclude the paper and also
indicate directions for further research.

2 Definitions and Notations

We denote a line segment with end-points p and ¢ by pg. Let S denote a set of n parallel line
segments. The functions top(.) and bot(.) return the upper and lower end-points of a line segment.

The upper chain of the convex hull of the lower end-points of the line-segments in S has the
property that bot(s) of each line-segment s lies on or below it. If we partially order convex chains
over a given range of x-values by defining a chain to be “less than or equal” to another if at every
point of the range the corresponding y-value of the former is less than or equal to the corresponding
y-value of the latter, then the upper hull of the lower end-points is the “smallest” one in the given
partial order to have the above property . To reflect this we denote this lowest upward-convex
chain by luc(S). ’

Similarly, the lower chain of the convex hull of the upper end-points is the “largest” among
all convex chains which have top(s) for each line segment s lying on or above it. We denote this
highest downward-convex chain by hdc(S).

We assume, without loss of generality, that there is a unique leftmost line-segment 1L and a
unique rightmost line-segment rR. Clearly, the end-points of luc(S) are L and R and those of
hdc(S), I and r. Let < uy,ua,...,up > be the ordered set of vertices on luc(S) from L to R and
< v1,02,...,0q > those on hdc(S) from I to r. Let P’ be the convex region that consists of the
points lying on or below luc(S) and on or above hde(S) (Fig. 1).

It is easy to see that if P is a convex polygon that intersects all the line-segments in S then at
every value of z between [L and rR the upper hull of P lies “on or above” luc(S) and its lower
hull lies “on or below” hde(S). It follows that P’ is contained in P. Further we can assume that
no part of P lies to the left of 1L or to the right of *R. In fact we can restrict our search to the
class of polygons that has exactly one point in common with each of the extreme line segments.

Let u and v be the vertices of P that lie on the leftmost and rightmost line-segments respectively;
UC(P) and LC(P) are its upper and lower chain respectively.

3 The Algorithm

We first need to characterise the area-optimal convex polygon P.
To eliminate a trivial case, we assume that the extreme line segments are of non-zero length.
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Figure 2: Parts A(A’), B(B') and C(C’) of the upper(lower) chain of a convex polygon, enclosing
P.

L "R

.Figure 3: Edges A and A’, touching P’ at z and y

It is intuitively clear that UC(P) (LC(P)) must hug luc(S) (hdc(S)) as closely as possible. The
problem is to express this in a quantitative way. We argue for UC(P); the argument is identical -
for LC(P).

The chain UC(P) has three distinct parts - a left part A between u and the first point of contact
of UC(P) with luc(S), a middle part B that is common with luc(S) and a right part C between
the last point of contact of UC(P) with luc(S) and v (Fig. 2).

It is obvious that A(B) cannot have any vertex of UC(P) lying strictly between u(v) and the
first(last) point of contact between UC(P) and luc(S). Otherwise P would not be of minimum
area. Therefore the parts A and B are straight-line segments. If we extend these, each is tangent
to luc(S) along an entire edge or at a vertex only.

Let A’, B’ and C’ be the corresponding parts of LC(P). The following lemmas provide a
necessary characterisation of P.

Lemma 1 If P is a convez polygon of minimum area that intersecls all the line segments in S,
then either A (respectively B), when eziended, touches luc(S) along an edge or A’ (respectively B'),
when eztended, touches hdc(S) along an edge.

If one of A or A’, when extended, touches along an edge and the other at a vertex, the edge
and the vertex are rela.t.ed as in the lemma below.

Lemma 2 If A when eztended touches the edge Ty(veriex z) of luc(S) and A’ when eztended
touches the vertez z (edge TG) of hdc(S) then the vertical line through z intersects Ty.

Lemma 3 If A when extended touches the edge U of luc(S) and A’ when eztended touches the
cdge uv’ of hdc(S) then either the vertical line through u inlersects v’ or the vertical line through
u’ inlersects Uv.

Lemmas 2 and 3 above hold when we replace A and A’ by B and B’ respectively. _
The above characterisation is also sufficient because if P’ is any other polygon which satisfies
the conditions of the above lemmas, then any small perturbation of P’ only increases its area.
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Figure 4: Edge of contact Z, lying to the right of contact point z.
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Figure 5: Edge of contact ZF, lying to the right of edge of contact z'y/.

To compute A and A’ we consider an edge of luc(S) or hdc(S) and extend it. If it intersects the
leftmost segment, we draw a tangent from the point of intersection to the other chain, and check
if any of Lemmas 2 or 3 applies. If not, we repeat until such an edge is found. Parts B and B’
are computed similarly.

We can now formally state the algorithm to compute the parts A and A’.

Algorithm MinPolyStabber(S, A, A')
Step 1.Compute the upper hull luc(S) of the points bot(s)
" and the lower hull hdc(S) of the points top(s).
Step 2.If all edges on luc(S) are marked then
go to Step 3
else
choose an unmarked edge e on luc(S);
if the supporting line of e does not intersect 1L then
mark e and go to Step 2
else
draw a tangent to hdc(S) from the point of intersection;
if Lemma 2 or Lemma 3 applies to the configuration
of tangents so obtained then
return A, A’ and quit
else
mark e and go to Step 2.

Step 3.Repeat Step 2 with hdc(S) replaced by luc(S) and
vice versa, returning B, B’ instead of A, A'.
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4 Analysis of the Algorithm

The complexity of Step 1 is bounded above by O(nlogn). Since it requires time logarithmic in the
size of a chain to compute a tangent to it from a given point, the complexity of Step 2 is bounded
above by O(nlogn) also. Same goes for Step 3. Therefore the time complexity of the algorithm
to compute parts A and A’ is O(nlogn). Since B and B’ can be computed in the same time
complexity, the time complexity of the algorithm is O(nlogn).

5 Dynamic algorithm

In this section we consider a dynamic version of the above algorithm in which both insertion and
deletion of line segments are allowed. Since insertion and deletion of line segments require us to
update the chains luc and hdc, we can use the dyanmic convex hull maintenance algorithm of
Overmars and van Leeuwen [OvL81] for this purpose. It is well-known that dynamic convex-hull
maintenance requires O(log?n) worst-case time for each insertion/deletion operation. Thus we
can maintain a minimum area convex polygon which intersects a dynamic set of line segments
provided we can find a more efficient way of determining the points on the leftmost and rightmost
line segments from which to draw tangents to the chains luc and hdc than given in the algorithm
of the last section.

It is enough to examine this problem for the rightmost segment. From r we draw a tangent to
the chain luc; let u be the leftmost point of contact between this tangent and luc. We will do a
binary search of the part of luc from u to R. The part of hdc over which we do binary search will
be automatically defined as follows. We extend an edge in the middle of the sub-chain we have
found to intersect rR and then draw a tangent to hdc from this intersection point. The leftmost
point of tangency and r define the binary search range for hde.

How is the search carried out ? Well, if the traingle defined by the tangents lies to the left
of the vertical through its apex, which, say, belongs to hdc, then we move to the middle of the
remaining range of luc else to the middle of the remaining range of hdc. The search terminates
when the vertical through the apex of the triangle intersects its base.

Since we can draw a tangent to a convex chain from a point in time logarithmic in the size of
the chain, and binary search is logarithmic in the size of the range we can do all of the above in
O(log®n) time. '

Hence dynamic maintenance of a minimum area convex polygon that intersects a set of vertical
line segments can be done in worst-case time of O(log?n).

6 Conclusions

In this paper we have described an O(nlog n) algorithm for computing a minimum area polygonal
disk that stabs a set of parallel line segments. The natural problem to tackle next is to compute
a minimum area convex polygon that stabs a set of isothetic line segments, with the ultimate goal
of solving this problem for an arbitrary set of line segments. Another interesting problem to look
at is that of characterising a set of parallel line segments that can be stabbed by the boundary of
a convex polygon.
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