192

Area Requirement of Visibility Representations of Trees
(Extended Abstract) *

Goos Kant t Giuseppe Liotta *

Abstract

The area of a drawing of a graph is the area of the smallest
rectangle with sides parallel to the z— and y—axis that cov-
ers the drawing. In this paper we study the area required by
1- and 2-strong visibility representations of trees. We also
present linear time algorithms for drawing 1- and 2-strong
visibility representations of trees with optimal area.

1 Introduction

The problem of drawing a graph in the plane has received
increasing attention recently due to the large number of ap-
plications [3]. Examples include VLSI layout, algorithm an-
imation, visual languages and CASE tools. Vertices are usu-
ally represented by points and edges by simple open curves.
Another interesting representation is to map vertices into
horizontal segments and edges into vertical segments [8, 9].
Such a representation is called a visibility representation. In
this paper we study the area requirement of various types
of visibility representations of trees, and we present linear
time algorithms for drawing such representations with op-
timal area.

The concept of visibility between objects plays an impor-
tant role in various problems of computational geometry,
where we say that two objects of a given set are visible
if they can be joined by a segment which does not inter-
sect any other object. Two objects of the set are e-visible
if they can be joined by a non-zero thickness band which
doesn’t intersect any other object. ‘The objects are non

*Research supported in part by the National Science Founda-
tion under grant CCR-9007851, by the U.S. Army Research Of-
fice under grant DAAL03-91-G-0035, and by the Office of Naval
Research and the Advanced Research Projects Agency under con-
tract N00014-91-J-4052, ARPA order 8225. This work was per-
formed in part at the Bellairs research Institute of McGill Uni-
versity.

tDepartment of Computer Science, Utrecht.University P.O.
box 80.089, 3508 TB Utrecht, NL; e-mail: goos@cs.ruu.nl.

tDipartimento di Informatica e Sistemistica Universita’ di
Roma La Sapienza, 00185 Roma, Italy. This work has
been done while this author was visiting the School of
Computer Science of McGill University, Montreal; e-mail:
liottaCinfokit.ing.uniromal.it.

$Department of Computer Science, Brown University, Provi-
dence, RI 02912-1910; e-mail: rtQcs.brown.edu.

9Department of Computer Science, University of Texas at Dal-
las, Richardson, TX 75083-0688; e-mail: tollis@utdallas.edu.

Roberto Tamassia §

Ioannis G. Tollis ¥

overlapping. A visibility representation of a graph maps
vertices into objects and edges into segments between vis-
ible vertex-objects. Various visibility representations have
been considered in the literature, and received increasing
attention recently (see [7] for an up to date overview).
Tamassia & Tollis [9] studied three types of visibility rep-
resentations (weak, €, and strong) of graphs. A weak vis-
ibility representation maps vertices to horizontal segments
and edges to vertical segments having only points in com-
mon with the pair of horizontal segments corresponding
to the vertices they connect. Algorithms for constructing
weak visibility representations were presented in [9] and
independently in [8]. This type of representation has be-
come a core item in the field of graph drawing. Recently,
Kant [6] showed that such a visibility representation can
be constructed in linear time on a grid of size at most
(L2nJ = 2) x (n — 1), where n is the number of vertices
of the input graph. A strong visibility representation maps
vertices to horizontal segments such that two segments are
visible if and only if the corresponding vertices are adja-

cent [9]. Tamassia & Tollis showed that every triangular

planar graph and 4-connected planar graph has a strong
visibility representation [9]. However, deciding whether a
general planar graph has a strong visibility representation
is NP-complete [1].

" Several years after the publication of the first papers, re-
searchers started the study of the 2-dimensional variant of
this problem: vertices are represented by isothetic rectan-
gles, and edges are represented by horizontal or vertical seg-
ments, having only points in common with the pair of rect-
angles corresponding to the vertices they connect. We only
consider rectangles with non-zero area and sides parallel to
the z-axis and y-axis. This representation is called 2-weak
visibility representation. In [11] Wismath proved that ev-
ery planar graph admits a 2-¢ visibility representation, that
is a 2-weak visibility representation representation with the
additional property that two rectangles are e-visible if and
only if the corresponding vertices in the graph are adjacent.
A 2-strong visibility representation maps each vertex to a
rectangle such that two rectangles are visible if and only if
the corresponding vertices in the graph are adjacent.

Recently, the area of the representation has gained a lot of
attention, especially in the field of graph drawing [9; 4, 5, 2].
For a complete survey on graph drawing see [3]. The area
of a drawing is the area of the smallest rectangle with sides
parallel to the z— and y—axis that covers the drawing. The
width and the height of the drawing are the width and the

height of the covering rectangle. We assume the existence
of a resolution rule, which implies that the width and the
height of a drawing cannot be arbitrarily scaled down. A
typical resolution rule for 1- and 2- visibility representations
is requiring for the endpoints of the vertex segments or ver-
tex rectangles to be placed at the points of an integer grid.
The existence of such a resolution rule naturally raises the
problem of computing 1- and 2-visibility representations of
. a graph with minimum area.

We investigate the strong visibility problem for trees. The
contribution is twofold. First we show lower bounds on the
area occupied by any 1- and 2-strong visibility represen-
tation of trees. Next we present linear time drawing al-
gorithms that obtain such representations achieving these
bounds. Since in this paper we only study 1- and 2-strong
visibility representations, we call them 1- and 2-visibility
representations, for brevity.

The paper is organized as follows. Preliminaries are in
Section 2; in Section 3 and in Section 4 we study the area
requirement for 1- and 2-strong visibility representations of
trees; finaly, we present conclusions and open problems in
Section 5.

Omitted proofs can be found in the forthcoming full pa-
per.

2 Definitions

Given an integer grid, and two points p; = (z1,1) and
P2 = (2,2), a horizontal strip (vertical strip) between p,
and p; is the set of points with y-coordinate in the set [y1, y2]
(z-coordinate in the set [z1, z5]). A row (column) of the grid
is a vertical strip such that 3o = y; +1 (z2 = z; + 1).

We denote with S(v) the vertex segment (or rectangle
when considering two dimensions) associated to a vertex v;
S(v) is identified by specifying its rightmost abscissa, its
leftmost abscissa, its lower and upper abscissa. We denote
this by S(v) = (z(v),y(v)) = ([z1,22]), 11, 8]). F 21 = 2,
(11 = y2), then we denote S(v) = (z1,[y1,32]) (S(v) =

* ([x1,22), 1)) for short. We also denote z; by z1(v) and z,
by zr(v). K T is a rooted tree, the height of T, denoted by
h(T), is the length of the longest path from the root of T
to any leaf; an ancestor of a vertex v is any vertex v’ # v
in the path from the root of T to v.

Given a drawing ' we denote with zr(T") (zr(T")) the
rightmost (leftmost) z-coordinate of I'; we denote with y(I")
the maximum y-coordinate of I. Let I' C T, the right (left)
of I' is the subdrawing of I' whose points don’t belong to I'
and have z—coordinate greater than or equal to (less than
or equal to) zr(T') (zL(I")); the right and the left of I are
denoted with RIGHT(I') and LEFT(I"), respectively.

3 1-Visibility Representations
In this section we tackle the problem of the area required

by 1-visibility representations of trees. We distinguish the
cases of rooted trees and free trees.

193

3.1 Rooted Trees
Let T be a rooted tree. Then the following lemma holds.

Lemma 1 Let T be a rooted tree with | leaves and height
R(T). The area required by a 1-visibility representation of
T is Q(R(T) - 1).

Proof: Let I'(T) be a 1-visibility representation of T. To
avoid overlappings, no two leaves of T' can be represented by
two vertex segments in the same column of the grid. Thus
the width of I'(T') is at least I. Also, each vertex segment
of I'(T') must lie in a strip below its ancestors. Thus the
height of I'(T') is at least A(T). a

To obtain a 1-visibility of a rooted tree, we introduce the
following algorithm (notice that in a post-order numbering,
the children of a vertex v are numbered before v):

Algorithm 1-ROOTED

Input: Rooted tree 7.

Output: 1-visibility representation of 7T

1. Enumerate the leaves of T from left to right in increasing
order by assigning an integer in the set [k,...,k+1—1]
(k > 0 is any arbitrarily fixed integer). .

2. Draw each leaf i with a vertex segment S(i) = ([2i,2i +
1,0).

3. Number B) the internal
vertices of T in post-order vy,...,va_; let v;, .U
be the children of v; from left to right; let ymoz =
mazi<e<;i {y(viy), - .., y(vi;)}; draw v; as a vertex seg-
ment S(vl') = ([zb(”il)’ zR(”t',')]s Ymaz)-

end Algorithm.

In Fig. 1 an example of the output of Algorithm 1-
ROOTED is given.

5 6

- wms sas s e
0 1 2 3 4

Figure 1: Illustration of Algorithm 1-ROOTED

Lemma 2 Let T be a rooted tree with 1 leaves, n vertices,
and height h. Algorithm 1-ROOTED produces a 1-vistbility
representation of T with area (21 — 1) - h in O(n) time.

Theorem 1 Let T be a rooted tree with n vertices, | leaves
and height h. The area required by a 1-visibility represen-
tation I(T') of T is ©(h -1). Also I(T) can be computed in
O(n) time.

194

3.2 Free Trees.

A tree where no vertex has been chosen as the root is called
a free tree. In this subsection we study the area required
by a 1-visibility representations of a free tree. Let T be
a free tree. Let v be a vertex of T and let T2,...,T* be
the subtrees obtained by removing v and the edges incident
on v. We root each subtree T; at the unique vertex of
T:, adjacent to v in T. We assume that always h(T}) >
R(T?) > ... > h(T¥) in this paper. T¥ is called the k-th
highest subtree of v.

We denote with T, the tree obtained by deleting from T

the first and the second subtree of v and the incident edge
of v to T} and to T2. Root T, at v. We call the third
vertez of T the vertex v* such that the height of the third
highest subtree of v* is maximum, i.e., for which hA(T,+) is
maximum. Let k* be the corresponding height, i.e., &* =
h(Ty+).

Lemma 3 Let v be a vertez in a subtree of v*; let T} and
T? be the first and the second heighest subtrees of v respec-
tively. Vertez v* belongs to Ty or T2.

Lemma 4 Let T be a free tree with n vertices and l leaves;
let k* be the height of the third subtree of the third vertez of
T. The area required by a 1-visibility representation of T is
Qk* -1+ n).

Proof: Each vertex segment of I'(T) is associated to at
least one cell of the grid; thus, the area of I'(T) is at least
n. Also, to avoid overlappings, no two leaves of T can be
represented by two vertex segments in the same column of
the grid, unless they lie one in the strip above and the other
one in the strip below the vertex segment representing a
common ancestor; thus the width of I'(T) is at least [£].
Let S(v) be the horizontal vertex segment representing a
vertex v of T. All but two subtrees of v must be drawn in
the vertical strip between the endpoints of S(v). It follows
that the height of I'(T') is at least the height of the third
largest subtree among all subtrees of vertices with degree at
least three. Hence the height is at least k*. o

We discuss first the case that T has internal vertices (i.e.
non-leaf vertices) with degree at least 3. The proposed algo-
rithm consists of two main phases. In the first phase we find
node v* and we compute a special path called main path.
In the second phase we define the drawing of the subtree
T, of each vertex v of the main path and we construct the
drawing of the input tree.

Procedure PATH

Input: Free tree T with all internal vertices of degree at
least 3.

Output: Main path of T'.

1. Find v*; root T at v*.

2. Label each vertex v of T with a label L(v) in the set
{U,D} as follows; L(v*) = D; perform a pre-order
traversal of T; for each encountered vertex v delete T,
and mark its children in the remaining tree with an U
if L(v) = D, with an D if L(v) = U.

End Procedure

The main path is the path Prein of T containing all la-
belled vertices of T. Observe that Ppain contains two leaves
of T. In Fig. 2 we show vertex v*, and the main path of a
given free tree.

Figure 2: An example of the main path

Lemma 5 Let T be a free tree and let Ppain be the main
path of T. The following formula holds.

(UvEPm.;‘Tv) U Pmcin =T.

Lemma 6 Let T be a free tree with n vertices. Procedure
PATH computes the main path of T in O(n) time.

In the following procedure v; is a vertex of Ppain and
I'(T,;) is the drawing obtained applying Algorithm 1-
ROOTED to T;.

Procedure DRAW TREE

Input: Free tree T rooted at v*, Pnain-
Output: 1-visibility representation of T'.

1. Number the vertices of Pnain in increasing order vy ... vg
from one leaf to the other one.

2. Apply Algorithm 1-ROOTED to Ty, ; if L(v;) = U, then
increment zg(v;) of one unit.

3. Visit Ppein starting from v,; for any encounterd ver-
tex v; do the following: (i)apply Algorithm 1-ROOTED
to To,; (ii)set zL(I(Ty,;)) = zr(T(To,_,)) + 1; (iii)if
L(v:) = D then set y(T(T.,)) = y(T(Ts,..)) — 1; Giv)if
L(v:) = U then set y(I'(Te;)) = y(I'(To,_,)) + 1 and
enlarge S(v;) of one unit to the left and one unit to the

right.

End Procedure

In Fig. 3 we show an example of output of Procedure

DRAW TREE. The input graph is the one of Fig 2.

Figure 3: Illustration of the Procedure DRAW TREE

Observe that all vertices of P,.qin with the same la-
bel are represented by vertex segments with the same
y~—coordinate.

Lemma 7 Let T be a free tree with n vertices and I leaves;
let k* be the height of the third subtree of the third vertez of
T. Procedure DRAW TREE produces o 1-visibility represen-
tation T'(T) of T in O(n) time. Also the area required by
I(T) is is O(k* - 1).

Suppose now T has vertices of degree 2. Clearly, if T is
a path a 1-visibility representation of T requires linear area
and can be computed in linar time. Hence, suppose there
are some vertices of T with degree at least three. In this
case it is possible to define the main path of T' by slightly
modifying Procedure PATH. Namely, we compute first v*

and mark v*. We also mark the two neighbors of v*, say v;

and vz, belonging to T2 or T2.. Similar we mark the two
neighbors of v1, say v1, and vy,, belonging to T2, or T? (by
Lemma 3, v;;, = v* or v, = v*). The same is done for the
two neighbors of v2. Repeating this argument yields a path
of marked vertices between two leaves that is the main path
Prnain. Also, the marking operation can be done in such
a way that all the vertices of Ppqin that in T don’t have
degree two are alternatively labelled U or D. Observe now
that if no vertex v € T such that deg(v) = 2 is in the main
path, Procedure DRAW PATH can be applied and Lemma 7
still holds. .

In order to tackle the case when there is a subset of ver-
tices of degree two in the main path of T, we need the
following procedure.

Procedure DRAW PATH

Input: Path P, k*, z, y.

Output: 1-visibility representation of P.

1. Number the vertices of P in increasing order vy, ..., Unm.

2. Divide P in subpaths, each one (except, eventually the
one containin g vertex v,,) composed by k* vertices.

3. Mark the subpaths with down or up according to the
following rule. The first subpath P;(i.e. the sub-
path including v;) is marked down; a subpath P; =
(vj...,ve) is marked up if the predecessor of v; be-
longs to a subpath marked down; otherwise P; is
marked down.

195 -

4. Draw a subpath P; = (vp,...,v,) marked down as
follows. If v, = v; then draw v, as a vertex seg-
ment S(v1) = ([z,z + 1], y), else draw v, as S(v,) =
([z',2" +1],4' — 1), where z' = zp(vp-1) and y' =
Y(vp-1); draw any vertex v; (p < i < g) as S(v;) =
([z',2" + 1],3:) where yi = y(vi—1) — 1; draw v, as
S(vg) = ([z' + 1,2’ + 2], y,) where y, = y(vg_1) — 1.

5. Draw a subpath P, = (v,,...,v,) marked up as follows.
Dra w v, as S(v,) = ([z',2' + 1],y + 1), where 2’ =
zRr(vr-1) and y' = y(v,—1); draw any vertex v; (r<
i <s) as S(vs) = ([&',2'+1], ;) where g; = y(vio1)+1;
draw v, as S(v,) = ([z' + 1,2’ + 2],y,) where y, =
y(v.—l) +1.

End Procedure

An example of a path drawn by this procedure is given
later in the paper (see Fig. 4)

Lemma 8 Let P be a path with n vertices. Procedure
DRAW PATH produces a 1-visibility representation I(P) of
P in O(n) time. Also the area required by I'(P) is O(n).

We are now ready to give Algorithm 1-FREE TREE.

Arbitrarely fixed one sense of percorrence in Prqin, sup-
pose there is a path P C Pain joining a vertex v’ and
a vertex v of Ppginsuch that (i)all vertices belonging to
P are vertices of T with degree two; (ii)deg(v') > 3 and
deg(v) > 3; (iii)when going along Prain in positive direc-
tion, vertex v' is encountered before vertex v. Vertex v'
is the predecessor of path P and vertex v is the successor
of path P. The basic idea of Algorithm 1-FREE TREE is
to draw first tree T as if no vertices of degree two were in
Prain. Then, we apply Procedure Draw Path to P and
we insert I'(P) in the drawing between its predecessor and
its successor. In what follows we adopt the following nota-
tion; I'(P) is the drawing of P produced applying Procedure
DRAW PATH to P; W is the width of I'(P); I(T,) and I'(T,)
are the drawings obtained applying Algorithm 1-ROOTED to
T, and T,/; y' is the y—coordinate of any vertex segment
labelled D. '

Algorithm 1-FREE TREE

Input: Tree T.

Output: 1-visibility representation of 7.
1. Compute Ppgin.

2. Apply Procedure DRAW TREE ignoring any vertex of
Prrain that is not labelled U or D. Let I'(T") be the
obtained drawing.

3. For each path P that has been ignored in the Step 2
do the following : (i)apply Procedure DRAW PATH with
paramters k*, z = zp(I'(T,/))+1 and y = y'—2. (ii)Let
RIGHT((I(T.r)) be the right of I'(T,) in I(T');
add W +1 to all z—coordinates of RIGH T((T(T.)).
(iii)Increment zgr(v') of ome unit; decrement zr(v) of
one unit.

End Algorithm

196

In Fig. 4 an example of path P between (I'(T,/)) and
(T(Tv)) is shown.

S(v)

Figure 4: Illustration of Step 3 of Algorithm 1-FREE
TREE

Lemma 9 Let T be a free tree with n vertices and l leaves;
let k* be the height of the third subiree of the third vertez
of T. Algorithm 1-FREE TREE produces an 1-visibility rep-
resentation I(T) of T in O(n) time. Also the area required
by I(T) is is O(k* - 1+ n).

Theorem 2 Let T be a free tree with n vertices and l leaves;
let k* be the height of the third subtree of the third vertez of
T. The area required by a 1-visibility representation I'(T')
of T is (k™ -1+ n). Also I'(T) can be computed in O(n)

4 2-Visibility Representations

In this section we consider the problem of constructing 2-
visibility representations of free trees. We present linear
time algorithms for this problem and show that the required
grid size is asymptotically optimal.

Let T be a free tree with n vertices and [leave. Every
leaf v; has only one neighbor, say vi. For any S(vi) =
([z1, z2], [y1, y2]) we can define four strips; the above strip is
composed by all points (z,y) with z € [z1,z2] and y > ys;
the right sirip is composed by all points (z,y) with y €
[v1,2] and = > z2; similarly are defined the below strip
and the left strip. The above and below strips are vertical
strips, the right and left strip are horizontal strips. Observe
that for each S(vi), only S(vi) can intersect one of such
strips (otherwise it would be visibility between not-adjacent
vertices). This observation yelds the following lemma.

Lemma 10 Let T be a free tree with l leaves. A 2-visibility
representation of T requires an area Q(I-1).

Proof: For every leaf at least one vertical and one hor-
izontal strip are wasted, i.e. no other vertex can intersect
them. Since for every row (column) of the grid we can de-
fine two horizontal (vertical) strips, this yields a grid of size
at least [1]-[1]. . o

Similarly we can prove that for every vertex of degree 2
at least one vertical or horizontal strip is wasted. Let k be

the number of vertices of degree 2, then in every 2-visibility
Tepresentation the height or width has size at least [£].
Combining this result with Lemma 10 gives the following
lemma.

Lemma 11 Let T be a free tree with n vertices and I leaves.
A 2-visibility representation of T requires an area Q(I - n).

Proof: Drawing the leaves already requires [] columns
and [2] rows. The vertices of degree 2 also require [%]
columns or [£] rows. The sum of the degrees of all vertices
is 2(n — 1). Let p be the number of vertices with degree at
least 3, then p = n — k — I. It follows that I + 2k + 3p <
2(n—1), thus p < 1—2. Hence 2(n —1) > 1+ 2k + 3p >
2k+4p+22>4p+2 p< =22 =2 1< |2]. Thus
k+12> [%]; which completes the proof. o

The algorithm for constructing a 2-visibility representa-
tion of a tree T is now as follows:

Algorithm 2-FREE TREE

Input: Free tree T.

Output: 2-visibility representation of T.
1. Root T at an arbitrary vertex v.

2. Enumerate the leaves-of T from left to right in increasing
order by assigning an integer in the set [1,...,1].

2. Draw each leaf i with a vertex rectangle S@) = (21, 2: +
1],[2,2i + 1]).

3. Number the internal vertices of T .in post-order
Vl41yeeeyUn.

4. Visit the vertices v; I +1 < ¢ < n) in increas-
ing order; let v;, ...v;; be the children of v; from

left to right; Draw v; as a vertex rectangle S(v;) =
(leL(vir),- .- zr(vi,)], [26,2¢ + 1))

end Algorithm.

In Figure 5 an example of a 2-visibility representation is
given.

Figure 5: Illustration of Algorithm 2-FREE TREE.

Lemma 12 Let T be a free tree with n vertices and l leaves.
Algorithm 2-FREE TREE produces an 2-visibility represen-
tation I'(T) of T in O(n) time. Also the area required by
T(T) is O(l - n).

Proof: It follows directly that the algorithm can be im-
plemented to run in linear time. The size of the grid is
(21 = 1) - (2n — 1). To show that the drawing indeed is a
2-visibility representation we notice that S(v;) is placed be-
tween heights 2i and 2i + 1, hence no two rectangles can see
each other in horizontal direction. Assume for each vertex
v; that z(v;) = [2:,,2i,] with z;, > z;,. Let v; = parent(vi)
for an arbitrary vertex vk, then z;, < zx, < zx, < 21, and
by the post-order numbering, there is no vertex v;, with
k < i < 1such that z;; < 2, < #x, < zi,. Hence in
vertical direction only S(v;) is visible from S(vi). Since the
same holds for the children of v with respect to v, this
completes the proof. - " (u]

Theorem 3 Let T be a tree with n vertices, | leaves and
height h. The area required by a 2-visibility representation
I(T) of T is ©(l - n). Also I(T) can be computed in O(n)
time.

5 Conlusions and Open Prob-
lems

In this paper we have studied the area provided by 1- and
2-strong visibility representations. We have provided lin-
ear time algorithms for drawing 1- and 2-strong visibility
representation of trees with optimal area. This is the first
time that algorithms for 2-strong visibility representations
are presented. However, several open problems remain. In-
deed, the most natural question is to determine which kind
of graphs can be represented by a 2-strong visibility repre-
sentation? Even for series-parallel and planar graphs this
problem is open, and is left for the interested reader.

Secondly, our algorithms are asymptotically optimal with
respect to some existential lower bounds. It is interesting
to study whether the algorithms are always asymptotically
optimal, and to improve the constant factors in the grid
size.

Acknowledgments

This research is a consequence of the authors’ participation
to the Workshop on Visibility Representation of Graphs or-
ganized by Sue Whitesides and Joan Hutchinson at the Bel-
lairs Research Institute of McGill University, Feb. 12-19,
1993. We thank the other participants of the Workshop for
useful discussions.

197

References

(1] T. Andreae, Some results on visibility graphs, 1989,
preprint.

[2] P. Crescenzi, G. Di Battista, and A. Piperno, A Note
on Optimal Area Algorithms for Upward Drawings of

Binary Trees, to appear in Comp. Geometry: Theory
and Applications.

[3] G. Di Battista, P. Eades, R. Tamassia, and LG. Tol-
lis Algorithms for Automatic Graph Drawing: An An-
notated Bibliography, Dept. of Comp. Science, Brown
Univ., Technical Report, 1993. Available via anony-
mous ftp from wilma.cs.brown.edu (128.148.33.66), files
/pub/gdbiblio.tex.Z and /pub/gdbiblio.ps.Z.

[4] G.Di Battista, R. Tamassia and 1.G. Tollis, Constrained
Visibility Representations of Graphs, Inform. Process.
Letters 41 (1992), pp. 1-7.

[5] G. Di Battista, R. Tamassia and I.G. Tollis, Area Re-
quirement and Symmetry Display of Planar Upward
Drawings, Discr. and Comp. Geometry (1992), pp. 381—
400.

[6] G.Kant, A More Compact Visibility Representation, in:
J. van Leeuwen (Ed.), Proc. 19th Intern. Workshop on
Graph-Theoretic Concepts in Comp. Science (WG’93),
Lecture Notes in Comp. Science, Springer-Verlag, 1993,
to appear. .

[7] J. O’Rourke, Computational geometry column 18, Int.
Journal of Comp. Geometry & Appl. 3 (1993), pp. 107—
113. ’

[8] P. Rosenstiehl, and R. E. Tarjan, Rectilinear Pla-
nar Layouts and Bipolar Orientations of planar graphs,
Discr. and Comp. Geometry 1 (1986), pp. 343-353.

9] R. Tamassia, and I. G. Tollis, A Unified Approach to

Visibility Representations of Planar Graphs, Discr. and
Comp. Geometry 1 (1986), pp. 321-341.

[10] S.K. Wismath, Weighted. Visibility Graphs of Bars
and Related Flow Problems, in: Proc. Workshop on
Algorithms and Data Structures (WADS’89), Lecture
Notes in Computer Science 382, Springer-Verlag, 1989,
PpP. 325-334.

[11] S.K. Wismath, Bar-Representable Visibility Graphs
and Related Flow problems, Dept. of Comp. Science,
Univ. of British Columbia, Technical Report, 1989.

