204

On Critical Orientations in the Kedem-Sharir Motion
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Abstract

We discuss a technical problem arising in the motion
planning algorithm of Kedem and Sharir [KS], and
propose a way to overcome it without increasing the
asymptotic complexity of the algorithm.

1 Introduction

The paper “An efficient motion-planning algorithm
for a convex polygonal object in two-dimensional
polygonal space”, by Kedem and Sharir [KS], studies
the problem of planning a collision-free motion (in-
cluding translation and rotation) for a convex polyg-
onal body B, with k corners, amidst polygonal ob-
stacles having n corners altogether. Given initial and
final placements of B, determine whether there is an
obstacle-avoiding motion from the initial placement
to the final placement and, if so, plan such a motion.

In what follows we assume some familiarity of the
reader with the algorithm of [KS]. Nevertheless we
will present a brief description of the technique, pro-
viding enough details to allow us to state the tech-
nical difficulty that arises, and to describe a method
for overcoming that difficulty.
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1.1 Outline of the Kedem-Sharir Al-
gorithm

The technique of [KS] is to construct a combina-
torial representation of the boundary of the three-
dimensional space FP of free placements of B,
parametrized by (z,y,6), where (z,y) are the coor-
dinates of some fixed reference point on B, and 4 is
the orientation of B. The representation of F'P is
by means of a so-called edge graph EG, whose nodes
are edges of F'P, and whose edges connect nodes in
EQG if the corresponding edges of F P are adjacent in
some cross-section (at a fixed 6) of FP. The edge
graph preserves the connectivity of FP—each con-
nected component of EG consists of all edges that
bound the same connected component of FP. Once
the edge graph is constructed, motion planning is re-
duced to path searching in that graph.

The edge graph EG is built incrementally, by
sweeping a planar cross-section of the form 6 = const
over the space FP. We denote by FPy the cross-
section of FP at a fixed orientation 6, hence it rep-
resents the space of free placements of B when B
is allowed only to translate at the fixed orientation
6. As shown e.g. in [KLPS], the space F P, is a pla-
nar polygonal region that has only O(kn) vertices
and edges. In more detail, let By denote the stan-
dard placement of B at which it has orientation 4
and its reference point lies at the origin. Assume,
without loss of generality, that the obstacles are a
collection of convex polygons with pairwise disjoint
interiors, and let us denote them by A,,..., A,,. Let
A} (0) denote the Minkowsk: sum A; + (—By), for
t=1,...,m. Then FPy is the complement of the
union of the ezpanded obstacles Af(6). It is shown
in [KLPS] that the boundaries of any pair of distinct
expanded obstacles cross in at most two points, and
that this implies that the union of the expanded ob-
stacles has at most 6m = O(n) concave boundary
corners. Hence F P has at most O(n) convex cor-
ners and at most O(kn) concave corners (which are
corners of the expanded obstacles A}(8)). Note that
each convex vertex of F' Py represents a placement of
B at orientation § at which it makes simultaneously
two distinct contacts with the obstacles, while oth-
erwise remaining free of collision with the obstacles;



each concave corner of F P, represents a placement
of B at which a corner of B makes contact with some
obstacle corner, while otherwise remaining free.

The construction of EG begins by constructing a
vertez graph V Gy, at the orientation 6y of the initial
placement of B. This graph represents the boundary
of F Py, when B is allowed to translate at the fixed

. initial orientation fp—its nodes are the vertices of
F Py, and its edges connect pairs of adjacent vertices
along the boundary of F Py, (see [KS] for a more pre-
cise formulation). As 6 varies, the vertices of V Gy, as
they trace the edges of F'P, are followed. Sweeping
through FP in this manner, we need to detect criti-
cal orientations, at which edges of F P start or end.
Roughly speaking, a critical orientation is an orien-
tation of B at which there exists a placement where
B makes three simultaneous contacts with the obsta-
cles, while otherwise remaining free. Once the list of
all critical orientations is. constructed (and sorted),
the sweep over F P can be performed, because the
critical events that occur during the sweep are al-
ready known and the graphs VGy and EG can be
updated at each critical orientation. Except for vari-
ous additional technical details, which we omit here,

this is a high-level description of the algorithm of
[KS].

1.2 A Technical Difficulty in the Al-
gorithm

The main task required by the algorithm is thus the
efficient computation of all critical orientations. As
shown in [LS], the number of critical orientations is
O(kn)g(kn)), where A,;(m) is the maximum length of
a Davenport-Schinzel sequence of order s composed
of m symbols (see [HS, ASS])).

Our goal is to compute all these orientations in
time O(knAg(kn)log kn). The technique of [LS, KS]
does not achieve this goal exactly, which is the source
of the problem we are about to discuss; instead it
constructs a superset of all critical orientations. The
size of this superset is also O(knAg(kn)), and each of
these orientations has a placement at which B makes
simultaneously three obstacle contacts, but for some
of these orientations the corresponding triple-contact
placement might not be free. We do not know of
any really efficient way to distinguish between the
valid orientations, whose associated placements are
free and the other spurious ones. For simplicity, we
refer to all computed orientations as critical. Figure 1
shows placements of B at critical orientations.

The reason why the algorithm in [KS] may gener-
ate spurious critical orientations lies in its technique
(adapted from [LS]) for. computing critical orienta-
tions. We sketch the technique briefly. Define a con-
tact pair as a pair O = (W, S), where W is an ob-
stacle edge or vertex and S is a vertex or edge of B,
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Figure 1: A valid critical orientation (a) and a spuri-
ous critical orientation (b); the obstacles are drawn
in solid lines and B in dashed lines.

Figure 2: Obstacle containment not encoded in any
bounding function - -

respectively. Given two contact pairs O, 0’ and an
orientation 6, it is shown in [LS], [KS] that if there is
a free placement of B at orientation § where it makes
a double contact involving O and O’ then one of these
pairs, say O, must bound the other, in the sense that
there is a direction in which we can translate B so
that it continues to make the contact O, and during
this motion it keeps intersecting the obstacle corner
or edge of O’, until it reaches the ‘end’ of the con-
tact O (see the cited papers for more details, see also
Figure 2 where O’ bounds O, 0" bounds O and O’
bounds O").

This allows us to introduce a collection of bound-
ing functions Fo 0:(6), each measuring the transla-
tion distance along O from its starting point to the
point at which B (at orientation §) makes the double
contact O,0’, where O’ bounds O. These are par-
tial functions of 6, and are defined only when such a
double contact is possible and when O’ bounds O at
that contact. It is shown in [LS, KS] that by com-
puting various upper and lower envelopes of subsets
of bounding functions, and by a careful interaction
of these envelopes, one can obtain (the superset of)
all critical orientations.

The main weakness of this technique is that the
bounding functions do not represent all the infor-
mation about collision of B with the obstacles. A
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typical problematic example is shown in Figure 2; in
that figure, as B slides along the contact O it always
contains the small obstacle A, and this fact is not en-
coded in any bounding function, because there exists
no double contact (at this orientation) involving O
and a contact of B with A. On the other hand, the
double contacts O, O’ and O, 0" are encoded in their
respective bounding functions, hence the critical ori-
entation where B makes the triple contact O, 0’, 0"
is included in the superset of the critical orientations
even though it does not represent a free placement of
B. .
As described above, the algorithm of [KS] con-
structs the edge-graph EG by sweeping over the list
of critical orientations (both valid and spurious) and
by processing the changes that occur in V' Gy at each
critical orientation 6. The algorithm has to check
whether the current critical orientation 6 is valid or
spurious, to discard spurious orientations, and to up-
date VGy and EG at valid orientations. The problem
is to find an efficient technique for checking whether
the current orientation is valid or not.
A Partial Solution: The paper [KS] suggests the
following approach: suppose a triple contact, involv-
ing contact pairs O, O’, O”, occurs at a critical ori-
entation 6. If the corresponding placement of B is a
limit of free placements of B at orientations 8’ suf-
ficiently close to, and preceding 6, then 8 is clearly
valid. Moreover, this can be checked in logarithmic
time. However, when this is not the case, i.e. when
the critical orientation 6 is due to a new component
of VGy and F Py, then this method does not apply,
and we have no way to determine, using only local
information, whether 6 is valid or spurious. This is
the problem that we consider in this note.

A Costly Solution: One recent solution to this dif-.

ficulty was proposed by Sharir and Toledo [ST, T,
who apply the algorithm of [KS] to solve extremal
polygon containment problems. They prepare sev-
eral data structures for triangle range searching and
for segment intersection queries, and query these
structures with each critical placement of B—the
placement is free if and only if, at this placement,
no vertex of B lies inside an obstacle, B does not
contain any obstacle vertex, and no edge of B inter-
sects any obstacle edge. All these tests can be done
in a total of O(klogkn) time per placement, allow-
ing sufficient storage for the data structures (which
is available anyway in the algorithm of [KS]). This
method runs in time O(kZn)g(kn)logkn) which is
a factor of k worse than the original time bound in
[KS]. Our goal in this note is to find an alterna-
tive way of overcoming the problem while remaining
within the original time bound O(knAs(kn)logkn)
of [KS].
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Figure 3: The ways in which C can become non-
convex; case (iv) is impossible

2 Our Solution

The task at hand is to find all valid critical orien-
tations at which a new component of F Py emerges.
Once we know them, we will be able to apply the al-
gorithm of [KS], which computes FP and EG incre-
mentally, and to discard in the process any spurious
critical orientation which.is supposedly due to an ap-
pearance of a new component of FP. QOur solution
suffers from the potential weakness that at the end
of the construction, we do not necessarily have the
description of all the cells (connected components)
of FP, but we are guaranteed that the cell of FP
which contains the initial placement of the robot is
fully constructed, and this suffices for most practical
applications.

Let 6, be an orientation where a new component
C emerges. Assuming that the obstacles and B lie
in general position (see [KS]), C starts as a point at
FP,, and grows to a small triangle at cross-sections
F Py for orientations 6 slightly larger than 6;. As 6
increases, more edges can be added to C at further
critical orientations. Our main observation is that if,
during the process of the incremental construction of
FP, C is going to be connected to another connected
component of F Py, at some orientation §*, then at

~ orientations § greater than but sufficiently close to

6*, the boundary of C is non-convex. See, for exam-
ple, Figure 3(i). A cell C whose cross-section remains
convex for all § is therefore called a dull cell of F P,
as in [AS].

Let 6* be the smallest orientation greater than
01 so that slightly after 8* the component C is no
longer convex. Of course, §* might not exist, but



then either C is dull, or # has reached the starting
orientation 6y (which is also the orientation at which
the sweep in 6 ends). In the former case, we can
ignore C since it is disconnected from the component
containing the initial placement of B. The latter case
will be treated below in much the same way as the
case when §* exists. C' can become non-convex in
one of the following three cases:

(i) A vertex of C becomes coincident with a con-
vex vertex of an expanded obstacle, which then pulls
away from an edge of C, connects C to another com-
ponent and becomes a reflex vertex of the merged
component, see Figure 3(i).

(ii) A vertex of C becomes coincident with a con-
vex vertex of an expanded obstacle, which then pulls
away from one of the adjacent edges of the vertex of
C, exposing the convex corner as a reflex corner of
C, see Figure 3(ii).

(iii) Two adjacent edges of C become collinear and
then continue to ‘bend’ outwards, exposing an end-
point of one of them as a reflex corner of C, see Figure
3(iii).

These are the only possible cases in which C can
become non-convex, because it must contain a vertex
v of some expanded obstacle, reaching the boundary
of C from outside C. A simple case analysis shows
that there is only one more way in which this can
happen: at §* the vertex v lies on an edge e of C,
and later v pierces through e into C, in the manner
shown in Figure 3(iv). However, we claim (without
proof—for lack of space) that this case is impossible.

2.1 Computing the Critical Orienta-
tions of Concavity

In any of the three possible cases described above, if
6* denotes the critical orientation at which the cor-
responding critical configuration arises, then B must
make at 6* two obstacle contacts, one of which in-
volves contact of a corner of B at an obstacle corner
(which induces the expanded obstacle corner ‘pierc-
ing’ into C). There are O(kn) contact pairs of this
kind, and we can process each of them, in time
O(knlogkn), to find all the corresponding free criti-
cal placements of B. To do so, we note that such a
corner-corner contact leaves only one degree of free-
dom for B, namely rotation about the point of con-
tact. For each corner or edge S of B and each con-
vex obstacle A; we compute the set of orientations at
which S meets A; (while B rotates about the fixed
corner-corner contact). Similarly, for each corner or
edge W of any obstacle we compute the set of orien-
tations at which B meets W (while maintaining the
corner-corner contact). It is easily checked that these
sets consist of a total of O(kn) angular intervals, and
that they can all be computed in time O(kn). We
now compute the union of these ‘forbidden’ sets, us-
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ing a simple sorting process that takes O(kn logkn)
time, and the endpoints of the angular intervals form-
ing the union are precisely the (valid!) critical ori-
entations that we seek. Repeating this step for each
corner-corner contact, the total running time of this
step is O((kn)2log kn). Note that here we can ascer-
tain that all computed orientations and placements
are valid. We refer to these orientations as critical
orientations of concavity.

Remark: Note that, of the three possible cases
of critical orientations of concavity, only in case 1)
C can merge with another connected component of
F Py, so only these orientations are of real interest
for us, because only at them C can become a por-
tion of the connected component of F' P that contains
the initial placement of B. However, computing all
the other kinds of critical orientations of concavity
does not increase the asymptotic complexity of the
algorithm, and makes the above procedure simpler
to implement. “

2.2 Tracing Events of Concavity Back-
wards in 6§ Along FP

Let 6* be a critical orientation of concavity corre-
sponding to a component C becoming non-convex,
as above. Let v be a specific vertex of C at F Py, for
orientations 6 slightly smaller than 6*, defined as fol-
lows: in cases (i) and (ii) we take v to be the vertex
of C that is about to become coincident with the con-
vex vertex of the corresponding expanded obstacle;
in case (iii) we take v to be the point of intersec-
tion of the two adjacent edges of C that are about to
become collinear. See Figure 3 where these vertices
are highlighted. Note that in each of these cases v is
readily determined from the local information about
the critical configuration arising at 6*.

Imagine now that we reverse the direction of the
sweep in 6, over the list of critical orientations, start-
ing at * and proceeding in the list backwards until
C shrinks to a point and disappears. As this sweep
begins, v traces an edge of F P, which may end at a
vertex w of F'P (at some critical orientation), but, as
follows from the structure of C, w must be adjacent
to at least one new edge of F'P emerging from it in
the direction of decreasing 6, and this path (or paths)
continue along the boundary of F P until reaching the
critical placement where C vanishes.

In other words, if we sweep in # backwards, trac-
ing these edges of F'P and updating them at the ap-
propriate critical orientations, we eventually identify
all valid critical orientations at which new compo-
nents of F'P emerge, with the exclusion of dull com-
ponents that are unreachable from the initial place-
ment of B and have only convex #-cross-sections.

The backwards sweep in 6 can be implemented in
the following manner, similar to that used in [KS].
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For each contact pair O we maintain a sorted list
Lo = Lo(6) of contact pairs, so that for each O’ €
Lo(f) the two contacts O and O’ induce a vertex
of F Py (or, equivalently, induce an edge of F P that
crosses the section FPg). Not all such vertices will
be maintained, but those maintained are guaranteed
not to be spurious. The lists Lo(f) are maintained
as balanced search trees so that searches and updates
in any of them can be performed in O(log kn) time.
We initialize these lists by computing the whole cross
section F P,, at the initial orientation 6y, as in [KS].
We then sweep from 6y backwards through the sorted
list Z of all critical orientations.

If the current orientation 8* € E is a (valid) crit-
ical orientation of concavity, we find the correspond-
ing new vertex v of the corresponding component C
of F Py», and the two contact pairs O, O’ that induce
v. We add O’ to Lo and O to Los. (In case (i) we
will add both vertices that ‘emerge’ from the critical
placement, because C might lie on either side of this
placement.)

Suppose that 6* is some other critical orienta-
tion, corresponding to a simultaneous triple contact
involving the contact pairs O, 0’, 0”. We search with
O’ and O” in Lo, with O and O” in Lo/, and with O
and O’ in Lo~. If none of these searches is success-
ful, we ignore 6*, as it does not affect the structure
of the lists we are maintaining, and might as well be
spurious. Suppose then that some of these searches
succeed, say we find O’ in Lo (and, symmetrically,
also O in Lor). The important observation is that
#* must then be a valid critical orientation, because
the critical placement it represents is a limit place-
ment of free placements of B at orientations 6 | 6*.
We thus determine the local changes in F P, that oc-
cur around the corresponding critical placement, and
update the relevant lists Lo, Lo/, Lo~ as needed.
These updates may consist of insertions, deletions,
or replacements; they can be directly inferred from
the local geometric information describing the criti-
cal placement, and ensure that the lists L continue to
contain only valid entries after these modifications.

If the local change at 6* involves a small triangu-
lar component of F P, that shrinks at 8* to a point
and then vanishes, we add 6* to an output list ='.
We proceed with this sweep until all critical orien-
tations are exhausted. The final output Z’ gives us
all valid critical orientations at which (in the for-
ward sweep in 6) new components of F Py, which are
not dull, emerge. The correctness of this procedure
follows from the invariant, easy to establish by in-
duction, that (a) the procedure maintains only valid
contacts in the lists Lo; and (b) the procedure traces
all paths = which consist of a sequence of edges of
F P, are monotonically decreasing in 6, and start at
a designated vertex v of some critical orientation of
concavity. This invariant, combined with the obser-

vation made above concerning the backward #-sweep
of convex cross sections C, imply the asserted cor-
rectness.

2.3 Computing FP

After identifying in this manner all valid critical
placements where new (non-dull) components truly
emerge, we now apply the original algorithm of [KS],
with the following modification. When we reach a
critical orientation 6*, we check if it is an orienta-
tion where a new component of F'Py (potentially)
emerges. If so, we check if 6* belongs to Z'. If not,
we ignore it because it must be spurious or involve
a dull component. If #* does belong to Z’, we insert
the new resulting vertices of F P, into the appropriate
lists of contact pairs. If 6* does not involve a newly
emerging component, and is defined by three con-
tacts 0,0, 0", we search each of these contacts in
the lists of the two other contacts, as in the preceding
backward-sweeping stage. If none of these searches
succeed, we discard 6*, since it is spurious or corre-
sponds to a dull component. If some of the searches
succeed, we know that #* is valid, and update the
lists as required, using the local data concerning the
critical placement that 6* represents.

This modified algorithm correctly traces all the
edges of non-dull components of F P. Indeed, the al-
gorithm maintains the invariant that, at any orienta-
tion 6, its data structures represent all true vertices of
F Py that lie in non-dull components, and only those
vertices. We omit a full proof of this fact, which is a
consequence of the analysis given in [KS] and of the
discussion given above.

To summarize, we propose to use the following
4-stage algorithm:

(a) Compute (a superset of) all critical orientations,
as in [LS, KS].

(b) Compute all critical orientations of concavity.
(c) Perform the backwards sweep in 8, to obtain the
list of all valid critical orientations where new com-
ponents of F'Py emerge.

(d) Finally apply the algorithm of [KS], modified as
above.

Thus the overall running time of the algorithm is
O(knAg¢(kn)logkn), and is thus as efficient asymp-

~ totically as the original algorithm of [KS].
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