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Abstract

Given a polygon, the maximum visibility problem (MaxVP) asks for locating a point inside
the polygon from which the visible area is maximized. Minimum visibility problem (MinVP)
is defined similarly. Under standard visibility, we show that MinVP can be solved in O(n3)
time for simple orthogonal polygons and in O(n®log n) time for orthogonal polygons with holes.
Under stair-case visibility, we report following results: (a) We present an O(n®) time algorithm
to solve MinVP and MaxVP for simple orthogonal polygons. The time complexity increases
to O(n®logn) for orthogonal polygons with holes. (b) We show that for class 3 orthogonal
polygons, solutions for MinVP and MaxVP lie on the boundary and present an O(n?) time
algorithm to locate them.

1 Introduction

Study of the visibility properties of polygons have attracted the interest of many researchers in
recent years. Under the standard definition of visibility, two points inside a polygon are said to
be visible if the line segment connecting them does not intersect with the exterior of the polygon.
An important visibility problem is the placement of the minimum number of point guards inside a
polygonal gallery such that each point inside the polygon is visible to some guard. This problem is
known as the “Art Gallery Problem” in the computational geometry literature [0’R87, Sh92, To88].
The general problem of placing the minimum number of point guards inside a polygonal gallery,
with or without holes, is known to be NP-hard [LL86, Ag84]. An interesting visibility problem
closely related to the art gallery problem is the computation of the visible area from a given view
point. The area visible from a given view point g in the presence of obstacles is called the visibility
polygon from g. Linear time algorithms for computing visibility polygon from a point inside a
simple polygon are reported in [EA81, L83]. When the polygon contains holes visibility polygon
from a point can be computed in O(nlogn) time [As85], where n is the total number of vertices of
the polygon.

In this paper, we consider problems related to the placement of point guards inside a polygon
that maximizes/minimizes visibility. The maximum visibility problem (MaxVP) asks for locating
a point inside a polygon from which the visible area is maximized. The minimum visibility problem
(MinVP) is defined similarly. These kind of problems were introduced by Ntafos and Tsoukalas
in [NT91], which contains an approximation algorithm of O(n*logblogn) time and O(n?) space to
b bits of accuracy. Under standard visibility, we present an exact algorithm to obtain a boundary
point solution for MinVP. The algorithm runs in O(n®) time for simple orthogonal polygons and in
O(n3logn) time for orthogonal polygons with holes. Under stair-case visibility, we report following
results: (a) We present an O(n?) time algorithm to solve MinVP and Max VP for simple orthogonal
polygons; the time complexity increases to O(n®logn) for orthogonal polygons with holes. (b) We
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show that for class 3 orthogonal polygons, solutions for MinVP and MaxVP lie on the boundary
and present an O(n?) time algorithm to locate them. Due to space limitation proofs of theorems
and lemmas are omitted.

2 Algorithm Under Standard Visibility

In this section, we develop an algorithm to obtain a boundary point solution for MinVP for orthog-
onal polygons, under the standard definition of visibility. We partition the polygon into simpler
parts by adapting the partitioning scheme used in [NT91] as follows: If a reflex vertex is visible
to another vertex (reflex or non-reflex), we connect them by a straight line segment and extend it
on both sides until it hits the boundary. Figure 1 shows an orthogonal polygon partitioned in this
way. We use the term reflex partitioning to indicate such a partitioning. The visibility polygons
from points on an edge induced by the reflex partitioning share some common properties. This is
stated in the following lemma.

Lemma 1 [NT91]: The visibility polygons for points along an edge induced by the reflex parti-
tioning contain the same set of vertices of the polygon.

We denote the line segment with end points a and b as (a,b). Consider a boundary edge
e = (a,b) induced by the reflex partitioning. Without loss of generality we assume that edge e is a
horizontal edge and end point a is to the left of end point b (see Figure 2). Consider a triangulation
of the visibility polygon V, of a view point z on edge e. We next consider what happens to the
triangles of the visibility polygon V; as view point z moves from a to b along edge e. As z moves,
some triangles remain the same and other change. We refer to the triangles that are completely
visible from all points on edge e as fixed triangles and those that are partially visible from an
interior point as variable triangles. In Figure 2, variable triangles are shaded. A variable triangle
is completely visible from either point @ or point b but is only partially visible from an interior point
on e. Variable triangles that are completely invisible when z lies on point a become more and more
visible as z moves from a towards b, and we call such triangles as positive triangles. Similarly,
the variable triangles that are completely visible when z lies on a but become progressively invisible
as z moves from a towards b are called negative triangles.

The base of each variable triangle lies on the boundary of the polygon. We refer to variable
triangles with base lying on horizontal edges as horizontal triangles and those with base lying
on vertical edges as vertical triangles.

Lemma 2: The area of a positive horizontal triangle as a function of distance /; between view
point z and end point a is a straight line, i.e., A;‘;(ll) = Kjl,, where K; is a positive constant.
Similarly, the area of a negative horizontal triangle can be written as Ap () = K3 — K3ly, where
K2 and K3 are positive constants.

Lemma 3: The area of a positive vertical triangle as a function of distance /; between view point

z and end point a can be written as: A} (l;) = C; - 71—2%;;, where Cy, C3, and C3 are positive
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constants. Similarly, the area of a negative vertical triangle as a function of /; can be written as:

A;(h)=C - 5.

Lemma 4: The boundary point solution for MinVP for orthogonal polygons is given by one of the
end points of the edges induced by the reflex partitioning.

Theorem 1: The boundary point solution for MinVP can be computed in O(n®) time for simple
orthogonal polygons and in O(n3logn) time for orthogonal polygons with holes.

‘For exploring the visibility properties of orthogonal polygons, notion of stair-case path and
stair-case visibility have been useful [RC87, MRS90, GKN92]. A stair-case path consist of hor-
izontal and vertical line segments such that its intersection with any horizontal or vertical line is
at most one line segment. In other words, a stair-case path is monotone along both x-axis and
y-axis directions. Two points inside an orthogonal polygon are visible under stair-case visibility
if they can be connected by a stair-case path without intersecting its exterior. Stair-case visibility
concepts have been used to decompose orthogonal polygons into simpler polygons [MRS90, RC87].
If we traverse the boundary of an orthogonal polygon P in the clockwise direction, keeping the
interior to the right, then at vertex of the polygon we either turn 90° right (outside corner) or 90°
left (inside corner). A dent is an edge of the polygon whose both end points are inside corners.
The direction of dent traversing gives it orientations which we indicate as N, S, E and W dents. A
line segment inside a polygon with its end points at the boundary-is called a chord of the polygon.
‘A chord obtained by extending dent edges is called a dent-chord.

Consider the partitioning of a simple orthogonal polygon by dent-chords. We refer to such a
partitioning as the dent partitioning. It is easy to see that the visibility polygons within the same
region induced by the dent-partitioning are identical. The stair-case visibility polygon from a point
inside a simple orthogonal polygon can be computed from the trapezoidizations of the polygon
obtained by extending its horizontal/vertical edges in linear time. The detail of the algorithm is
reported in [G93]. To solve the minimum and maximum visibility problem we compute stair-case
visibility polygon for a point from each region, compute corresponding areas and report the ones
with minimum and maximum area. Since there can be O(n?) regions in a dent partitioning, and
since the area of a visibility polygon can be computed in linear time by using the triangulation
algorithm given in [Ch90], we can state the following theorem.

Theorem 2: Under stair-case visibility, the solutions for MaxVP and MinVP can be obtained in
O(n3) time for simple orthogonal polygons.

When the polygon has holes the time complexity of computing stair-case visibility polygon be-
comes O(nlogn) [G93] and hence the time complexity for solving MinVP and MaxVP increases by
a factor of O(log n).

It is tempting to explore whether the solution for MinVP and MaxVP lie on the boundary
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or not. Examples can be constructed where only non-boundary points can maximize/minimize
visibility. Similar examples can be constructed where only boundary equivalent points can mini-
mize/maximize visibility. A related issue would then be to identify class of orthogonal polygons
for which the solution lies on the boundary. Reckhow and Culberson [RC87] have demonstrated
the usefulness of classifying polygons in term of dent orientations. A simple orthogonal polygon is
said to be a class k polygon if it has exactly k£ dent orientations. Under this scheme, the class 4
polygons are precisely the set of all simple orthogonal polygon and the class 3 polygons are simple
orthogonal polygons having dent orientation only in three directions. Some difficult problems on
orthogonal problems can be solved relatively easily when the polygon is restricted to be a class 3
polygon. For example, Motwani et al [MRS90] have shown that the minimum cover of a class 3
polygon by stair-case star polygons can be found in O(n3) time.

Lemma 5: Under stair-case visibility, solution for MaxVP for class 3 orthogonal polygons can be
found on'the boundary. '

Lemma 6: Under stair-case visibility, solution for MinVP for class 3 orthogonal polygons can be
found on the boundary.

Theorem 3: Under stair-case visibility, solution for MinVP and MaxVP for class 3 polygons can
be computed in O(n?) time.

3 Discussions

We proved that, under standard visibility, the boundary point solution for MinVP for orthogonal
polygons is given by one of the end points of the segments induced by the reflex partitioning and
presented an algorithm to locate the solution. The time complexity of the algorithm is O(n3) for
simple orthogonal polygons and O(n3logn) for orthogonal polygons with holes. Under stair-case
visibility, we showed that MinVP and MaxVP can be solved in O(n3) time for simple orthogo-
nal polygons and in O(n3logn) time for orthogonal polygons with holes. For class 3 orthogonal
polygons under stair-case visibility, we proved that solutions for MaxVP and MinVP lie on the
boundary and presented an O(n?) time algorithm to locate them. A natural extension would be to
pursue for more efficient algorithms. The structural relationship between the visibility polygon of
adjacent vertices induced by dent partitioning might give insight to develop faster algorithms.
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