246
Simple Randomized Algorithms for
Closest Pair Problems*
— Extended Abstract —

Mordecai J. Golin!
Christian Schwarz$

Rajeev Raman'
Michiel Smid¥

1 Introduction

The closest pair problem is to find a closest pair in a
given set of points. The problem has a long history
in computational geometry and has been extensively
studied. It is well known, for example, that finding the
closest pair in a set of n points requires (nlogn) time
in the algebraic decision tree model of computation [1]
and that there are optimal algorithms which match this
lower bound. It is also well known that if the model of
computation is changed appropriately then the lower
bound no longer holds. This was first shown by Ra-
bin [8] who described an algorithm that combines the
use of the floor function with randomization to achieve
an O(n) expected running time. The expectation is
taken over choices made by the algorithm and not over
possible inputs. Recently, Khuller and Matias [6] have
described a radically different algorithm that also uses
the floor function and randomization to achieve an O(n)
expected running time.

In this paper, we present yet another algorithm that
combines the use of the floor function and randomiza-
tion to solve the problem in O(n) expected time. Our
algorithm is conceptually simpler than the ones in [8]
and [6]. It also differs from them in that it is a random-
ized incremental algorithm. The other two algorithms
are inherently static. The algorithm that we present
here assumes that the input points are fed to it in a se-
quence which is a random permutation py, pz2, ..., Pn
of the n points. The i-th stage of the algorithm will
find the closest pair of the set S; := {p1, p2, ..., pi}
in O(1) expected time leading to an overall O(n) ex-
pected running time. To prove this running time, we
use the technique of backwards analysis, due to Seidel.
See [11, 12].

*This research was supported by the European Community,
Esprit Basic Research Action Number 7141 (ALCOM II).

tHongkong UST, Clear Water Bay, Kowloon, Hongkong.
email: golin@cs.ust.hk. Work was done while author was em-
ployed at INRIA Rocquencourt, France.

$UMIACS, University of Maryland, College Park, MD 20742,
USA. email: raman®umiacs.umd.edu. Work was done while
author was employed at Max-Planck-Institut fiir Informatik,
Germany.

$Max-Planck-Institut fiir Informatik, D-66123 Saarbriicken,
Germany. email: schvarzCmpi-sb.mpg.de, from Sept. 1993:
schwarz@icsi.berkeley.edu.

T Max-Planck-Institut fir Informatik, D-66123 Saarbriicken,
Germany. email: michiel@mpi-sb.mpg.de.

" In Section 2, we present the algorithm and its anal-
ysis. We give an O(nlogn) expected time tree based
algorithm and show how to use dynamic perfect hash-
ing [3] to improve its expected running time to O(n).

In Section 3, we show that our closest pair algorithms
are reliable: For example, the linear expected time al-
gorithm actually runs in O(nlog n/loglogn) time with
high probability. Finally, in Section 4, we mention some
extensions of the algorithm. (Details can be found in
the full paper.)

2 The closest pair algorithm

To keep our exposition simple, we give the algorithm
for the two-dimensional case and the euclidean metric.
The extension to arbitrary, but fixed, dimension D > 2
and arbitrary L;-metric, 1 <% < oo, is straightforward.
Let d(p, q) denote the distance between the points p =
(#™),p®) and ¢ = (¢, ¢?), ie.,

d(p,q) = \/(P(l) = qW)? + (p) — ¢@))2.

Let S = {p1, P2, - - -, Pn} be a set of points. The closest
pair distance in S is '

6(S) :=min{d(p,q) : p,g € S, p # q}-

The closest pair proble-_m is to find a pair of points p, g €
S such that d(p, q) = 6(5).

Our algorithm will be based upon the following sim-
ple observation. Let S; := {p1, p2, -.-, pi} be the set
containing the first points of S. Then 8§(S;+1) < 6(S;)
if and only if there is some point p € S; such that
d(p, pi+1) < 8(S:)-

Suppose a square grid with mesh size §(S;) is laid
over the plane! and each point of S; is stored in the
grid box in which it appears. Let b be the grid box
in which the new point p;;; is located. Then every
point in S; that is within distance §(S;) of piy; must
be located in one of the 9 grid boxes that are adjacent
to b. (We consider the box b as being adjacent to itself.)
We call these 9 boxes the neighbors of b.

We note that each grid box can only contain at most
four points from S;. This is because if a grid box con-
tained more than four points then some pair of them
would be less than §(S;) apart, contradicting the defi-
nition of §(S;).

The above observations lead to the following generic
algorithm for finding the closest pair in S. The
points will be fed to the algorithm in random order
P1, P2y -- -, Pn, i.e., each of the n! possible orders is
equally likely. The algorithm starts by calculating
§(Sz2) = d(p1,p2) and inserting the points of Sz into
the grid with mesh size §(S;). It then proceeds incre-
mentally, always keeping set S; stored in a grid with

1To exactly specify the grid we will always assume that (0,0)
is one of its lattice points.

mesh size §(S;). When fed point p;y; it finds the at
most 36 points in the 9 grid boxes neighboring the
box in which p;;; is located and computes d;.;, the
minimum distance between p;;; and these at most 36
points. If there are no points in these boxes then
diy+1 = oo. From the discussion above we know that
6(Si41) = min (diy1, §(S:)) -

If diy1 > 6(S;) then 6(Sit1) = 6(S:) and the algo-
rithm inserts p;;; into the current grid. Otherwise,
8(Si+1) = dit1 < 6(S;) and the algorithm discards the
old grid, creates a new one with mesh size §(S;41), and
inserts the points of S;; into this grid.

The algorithm thus calculates §(S;) for ¢ =
2,3,...,n, in this order. Then it outputs the value
8(Sn) = 6(S). An example of our algorithm is shown
in Figure 1.

To actually implement the above algorithm we will need
the following: let P be a point set, d a positive real
number, p a point, G a grid, and b the name of a box
in a grid. We define the following operations.

¢ Build(P,d) : Return a grid G with mesh size d that
contains the points in P.

o Insert(G,p) : Insert point p into grid G.
o Report(G,b) : Return all points in grid box b.

Pseudocode for the closest pair algorithm using these
operations is presented in Figure 2.

How do we actually implement these grid operations?
One easy way is to use balanced binary search trees:
Consider a grid G with mesh size d, let p = (p(1), p(?))
be a point in the plane, and denote the box containing
pin G by b,. The integer pair (|p(!)/d], [p®/d]) is
called the indez of bp. The point set is stored as follows:
We determine the indices of the non-empty boxes and
store them in lexicographical order in a balanced binary
search tree. Moreover, with each box in this tree, we
store a list of all points that are contained in this box.
To insert a point into the grid, we use the floor function
to compute the index of the grid box that contains this
point. Then we search in the tree for this box. If it is
stored in the tree, then we insert the new point into the
list that is stored with the box. Otherwise, we create
a new node to hold the new grid box, together with a
list containing the new point.

Using this implementation, it takes O(nlogn) time
to run Build(P,d) for |P| = n. When G stores n
points, then Insert(G,p) will cost O(logn) time and
Report(G,b) will cost O(logn + |bN P|) time.

Assume the points are available in two lists X and Y,
sorted by z- and y-coordinates, respectively. Moreover,
assume that each point in Y contains a pointer to its
occurrence in X. Then the running time of Build(P, d)
can be improved to O(n): Walk along the list X and
,compute the value |p(1)/d| for each point p. Initial-
ize an empty bucket B(|p(!)/d]) for all distinct values

247

[p()/d|. Moreover, give each point in X a pointer to
its bucket. Then, go through the list Y. For each point
in this list, follow the pointer to its occurrence in X
and, from there, follow the pointer to its bucket and
store the point at the end of this bucket. Finally, con-
catenate all buckets into one list. This list contains the
indices of all non-empty boxes in the grid G, sorted in
lexicographical order.

Another way to implement the grid operations is by
using dynamic perfect hashing [3] to store the currently
non-empty grid boxes. Then, we can implement Build
in O(n) expected time, Insert in O(1) expected time
and Report in O(1 + |bN P|) deterministic time.

We should point out that dynamic perfect hashing
does not permit the insertion of totally arbitrary items
into a lookup table. It requires that the universe con-
taining the items be known in advance. In terms of
grids, this translates into having a bound on the indices
of possible non-empty grid boxes. As mentioned above,
the index of the box containing p = (p(*), p(?)) in a grid
with mesh size d is the integer pa.u: ([p(l)/dj 2@ /d)).

Therefore, the set of integers {Lpz /d_|, 1<i<n,j =
1,2} should come from a bounded universe. This is the
case in our application because we know all points in
advance. So, if we have to build a grid for the current
set with a given d, we have a bound on the indices of
all non-empty grid boxes before we start gridding.

We now analyze the cost of both the tree and hash-
ing based implementation of the algorithm. Let i be
fixed. Line 4 of the algorithm will call Report() 9 times
to find at most 36 points. Therefore lines 4-5 will use
O(log i) deterministic time in the tree based implemen-
tation and O(1) deterministic time in the hashing based
one.

Line 6 will be called at most once and uses O(log ?)
deterministic time for the tree based implementation,
and O(1) expected time if we use hashing.

Line 7 will use O(ilog) deterministic time if we use
trees and O(3) expected time if we use hashing. We can
improve the bound for trees to O(3) also if we maintain
the points of S; sorted by both their coordinates. Then,
as discussed before, the procedure Build runs in linear
time. Note that line 7 is called if and only if §(S;4;) <
8(S:). We will prove in Lemma 1 that this happens with
probability at most 2/(z + 1). Therefore, the expected
cost of line 7 is O(1) for both the tree based and the
hashing based implementation. (For the hashing based
implementation, the expected cost of line 7 is composed
of two random variables: One variable indicating if we
build a new grid, and the other variable gives the time
needed for this. This second variable depends on coin
tosses that are made to build a hash table. These coin
tosses have nothing to do with the first random variable.
Therefore, the two random variables are independent.
Hence, the expected cost of line 7is O(z) - 2/(i + 1) =
0(1).)

248

6(Sz) = d(p1, p2) §(Ss) = d(ps, p1) 8(Ss) = d(ps, p1)
P
Ps Ps Ps *Ps Ps
Pz P4 >P2 'y bP2
*P1 oPh o Ph
b P7
+Pa «pal P?
8(Ss) = d(p1, p2) §(Se) = d(ps, 1) 8(So) = d(pe, pe)
*Xs
oP3 o P5 Ps = g 7o
oP4 P2 D4 PP2 ke y33
oP1 o Ph P1
P oPir
*Pal *Pef"
8(Ss) = d(ps, P1) 6(S7) = d(ps, ;1) 8(S10) = d(pe, pe)
TP oPs
o Ps Ps D5 Ps “Pro L ¢ S
* P4 L P4 PP2 abe P}
oPh *Ph 4P
o Pa 7 -%g hd i

Figure 1: The incremental algorithm running on a set of 10 points. In the beginning the grid has mesh size d(p1, pz).
Every new minimal distance that is computed during the algorithm causes a refinement of the grid.

Algorithm CP(p1, p2, ..., Pn)

(1) & :=d(p1,p2); G := Build(S3, 6);

(2) fori:=2to n—1do

(3) begin

4) V := {Report(G,b) : bis a neighbor of the box containing p;41};
(5) d := mingev d(pi+1,9);

(6) if d> 6 then Insert(G,pis1)

(7) else § :=d; G := Build(S;41, 6);

(8) end;

(9) return(é).

Figure 2: Pseudocode for the closest pair algorithm.

Combining the three paragraphs above proves that
the i-th stage of our closest pair algorithm runs in O(1)
expected time if we use dynamic perfect hashing. If
the points are maintained in sorted order w.r.t. each
coordinate, the i-th stage of the tree based algorithm
takes O(logi) deterministic time plus O(1) expected
time. The latter separation of deterministic time and
expected time will be crucial for the “high probability”
running time of the algorithm, which will be discussed
in Section 3.

So, to find §(S) = 6(Sn), the algorithm uses
O(nlogn) expected time for the tree based implementa-
tion, and O(n) expected time if we use dynamic perfect
hashing.

As mentioned at the beginning of this section, our
algorithm works for points in any dimension and for
any L;-metric, 1 <t < oo. Suppose S is a collection
of D-dimensional points, where D > 2. We modify the
algorithm by extending the definition of a grid to be
D-dimensional and define the neighbors of a grid box
to be the 32 grid boxes that adjoin it. The algorithm

and analysis proceed as before. Note that a box in a

grid with mesh size §(S;)—which now is the minimal
L,-distance in S;—contains at most (D +1)? points of
S;. (See [10].)

We mention here that our algorithm, whatever im-
plementation we take, is much simpler than the known
O(n log n) deterministic algorithms for finding the clos-
est pair in dimensions higher than two. (See [2, 7, 9, 10]
for some of such algorithms.)

» Pn be a random permutation
, pi}. Then

Lemma 1 Letpy, po, ...
of the points of S. Let S; := {p1, p2, - .-
Pr[§(Sit1) < 6(S:)] < 2/(i +1).

Proof: We use Seidel’s backwards analysis technique.
(See [11, 12].) Consider S;, p;+1 and Siy1 = S;U{p;+1}-
Let A := {p € Si}1 : 3¢ € Si;1 such that d(p,q) =
8(Si+1)},i.e., Ais the set of points that are part of some
closest pair in S;;i. If |A| = 2 then there is exactly one
closest pair in S;;; and §(Si41) < 8(S;) <> pi41 € A.
If |A| > 2 there are two possibilities. The first is that
there is a unique p € A that is a member of every closest
pairin S;;;. In this case 6(Si+1) < 6(5,‘) <> piy1 = P.
The other possibility is that there is no such unique p.
In that case, S; must contain some pair of points from
A and, therefore, §(S;;1) = 6(S;).

We have just shown that, regardless of the composi-
tion of S; 41, there are at most 2 possible choices of p; 1
which will permit 6(S;+1) < §(S;). Since p1,p2,...,Pn
is a random permutation, the point p;,; is a random
point from S; ;. Therefore, the probability that 8(Si41)
is smaller than §(S;) is at most 2/(i + 1). n

We summarize our result:

Theorem 1 Let S be a set of n points in D-space, and
let1<t<oo.

249

1. The implementation of the algorithm that uses a
binary tree finds a closest pair in S, in O(nlogn)
ezpected time.

2. The implementation of the algorithm that uses dy-
namic perfect hashing finds a closest pair in S, in
O(n) ezpected time.

3 High probability bounds

In this section we will prove that the closest pair
algorithm runs quickly with high probability. To
achieve this result, we apply a method due to Clarkson,
Mehlhorn and Seidel [4] for obtaining tail estimates on
the space complexity of some randomized incremental
constructions, and a dynamic perfect hashing scheme
due to Dietzfelbinger and Meyer auf der Heide [3].

In each iteration of the closest pair algorithm of Fig-
ure 2, some (relatively cheap) work is done no matter

- which point is added or which points have been added

before, such as inserting the new point into the data
structure or computing the new closest pair. More
interesting for the probabilistic analysis is the expen-
sive rebuilding operation that has to be performed—
depending on the point that is added and the points
that have been added before—with low probability.
Therefore, we study a random variable that describes
this rebuilding cost. -

Definition 1 For any set T of points and any point
p € T, define

cost(p,T) = { LTI iiflfe’-’;)wfs:(T \{r})

That is, if we already have computed §(T \ {p}), then
cost(p, T) expresses the rebuilding cost of the closest
pair algorithm when computing §(T').

Let S be a set of n points. We define a random
variable Y as follows: Let py, ps, ..., pn be a random
permutation of the set S and let S; = {p1, p, ..., pi}
for 1 < iz < n. Then the random variable Y5 has value
Ys = Y ig cost(pi, Si).

Lemma 2 For all ¢ > 1, P1[Ys > cn] < €2¢/e2c”.

Our proof of this tail estimate follows the general
line of the tail estimate proof in [4]. We will obtain a
bound on the probability generating fanction of Y5 and
use this to obtain a bound on the probability that Ys
exceeds the value cn.

Definition 2 Let Z be a non-negative random vari-
able that takes only integer values. The probability
generating function (pgf) of Z is defined by Gz(z) =

Zpo P1[Z =j]-27.

Claim 1 For any h > 0 and a > 1, Pr[Z > h] <
Gz(a)/ak.

250

Proof: Gz(a) = 3,5, Pr[Z =j]- o/ > Yi>nPrZ =

jl-af > a* 2 i>n PrlZ =3]. ‘ u

By this fact, we can use bounds on the pgf of Z to
obtain a tail estimate for Z. Now let us look at the pgf
Gys(z) of our random variable Ys. We will use Gs(z)
as a short form for Gy, (z).

Claim 2 For all z > 1, Gs(z) < pa(z) :=
HISiSn (1+%(‘”'—1))-

Proof: The proof is by induction on n, the size of
S. For n = 1 and 2, the claim holds, because then
Gs(z) = 1 and the product on the right-hand side is at
least equal to one.

Let » > 3 and assume the claim holds for n —
1. Since py, p2, ..., Pn is a random permutation of
S, pn is random element of S, and so Gs(z) =
%Epes a:‘°"(?'s)G5\{,}(:c). Applying the induction
hypothesis yields Gs(z) < 2a=lE) 5 o geost(r.S),
From Lemma 1 we know that there are at most two
points p in S such that cost(p,S) = n. For the
other points p, cost(p,S) = 0. Therefore, Gs(z)
2azi®) (927 L — 2) = paoi(e) (1+ 2(z” - 1))
pa(z).

A

Proof of Lemma 2: We apply the above
claims: Pr[Ys > en] < Gs(a)/a™ for any

a € IRy by Clim 1. By Claim 2, this
_is at most (Hlsisn (14 2(a* - 1))) /a™. Apply-
ing the inequality 1 + ¢ < e gives Pr[Ys >
cn] < exp (EISiSn 2(a* - 1)) /a°™, which is at most
exp(2(a™ — 1))/a°", since (a* — 1) < Z(a™ — 1) for
each i < n and each a > 1. Choosing a = /", we
obtain Pr[Ys > cn] < e%¢/e%cc. |

We can now analyze the closest pair algorithm, first
turning our attention to the tree based implementa-
tion. The i-th stage of the algorithm requires O(logi)
time for searching out points in neighboring boxes, in-
serting p;4+1 into the lists that maintain the points
sorted by all their coordinates, and (possibly) insert-
ing pi41 into the grid. If §(Siy1) < 6(S;) then it will
regrid the points in O(7) time. Thus the full work
done by the i-th stage of the algorithm is described
by O (logi+ cost(p;+1,Si+1)) and the total work per-
formed by the algorithm is O (nlogn + Y5).

Let s be a positive integer. We apply Lemma 2 with
¢=2-3-Inn/Inlnn. Then, for n sufficiently large, we
have 2¢ — clnc < —slnn and therefore

Pr[Ys > 2snlnn/Inlnn]
S ezc/e2cc - e2«:—cln¢:/ez S e-—slnn/ez = O(n").

This shows that Y5 = O(nlogn/loglogn) with proba-
bility 1 — O(n~*) for every s. That is, the tree based

implementation runs in O(nlogn) time with probabil-
ity 1 — O(n~*) for any positive integer s.

Now let us analyze the hashing based implementa-
tion. We need some facts from [3] about their dynamic
perfect hashing scheme. Their scheme can build? a
hash table for » items in O(n) time with probability
1 - O(n~%) for every t. Moreover, a new element can
be inserted into a hash table storing n items in time
O(1), also with probability 1 — O(n™%).

We assume a slight variant of the closest-pair algo-
rithm. This variant does not start with ¢ = 2 but
instead uses a brute force method to find §(S,) in
O(n) time and inserts S, /; into the grid with mesh size
8(S/z)- Only then, with i = /n,\/n +1,..., n will it
start running the incremental algorithm.

Making this change ensures that the hash table al-
ways stores at least /n items. Therefore, with proba-
bility 1—O(n~%/2), an insert into the table will take only
O(1) time. Moreover, a rebuild on i items will take O(3)
time with probability 1 — O(n~t/2). We can therefore
assume that, with probability 1 — O(n!~*/2), over the
entire algorithm, every insert takes O(1) time and ev-
ery rebuild on 7 elements takes O(z) time. That is, with
probability 1 — O(n!~%/2), the total work performed by
the algorithm is O(n + Y, cost(pit+1, Sit+1)) = O(n +
Ys). We saw already that, for any positive integer r,
Ys = O(nlogn/loglogn) with probability 1 — O(n™").
Therefore the algorithm runs in O(nlogn/loglogn)
time with probability 1 — O(n!~%*2 + n~") for any
t,» > 1. So for any s > 1, we can choose t = 25 + 2
and r = s to obtain the running time with probability
1-0(n~%).

We summarize our results:

Theorem 2 The implementation of the closest pair al-
gorithm that uses a binary tree runs in O(nlogn) time
with probability 1 — O(n™*) for every s. The hashing-
based implementation of the closest pair algorithm runs
in O(nlogn/loglogn) time with probability 1—O(n™*)
for every s.

4 Extensions

We now mention some extensions of the algorithm.
(Details can be found in the full paper.) First, we con-
sider the problem of returning not only the closest pair,
but all the k closest pairs, where k is an integer between
1and (3). For this problem, there are deterministic al-
gorithms with running time O(nlogn + k), which is
optimal in the algebraic decision tree model of compu-
tation. (See [7, 9].) Combined with randomization and
the floor function, we get a simple algorithm with ex-
pected running time O(kn), which is better than the
algorithms in [7, 9] if k = o(log n).

2The algorithm presented in [3] does not explicitly show how

to build a hashtable with this probability. It can be modified to
do so, though, without too much difficulty.

Second, all algorithms of this paper assume that the
floor function can be computed at unit cost. We have
a variant of the closest pair algorithm presented in Sec-
tion 2 that has O(nlog n) expected running time, even
with high probability, without using this non-algebraic
function. This algorithm fits in the algebraic decision
tree model of computation, extended with the power of
randomization. Note that, since the Q(nlogn) lower
bound still holds for this model, the algorithm is opti-
mal. The main idea of the algorithm is to replace the
standard grid, for which the floor function is needed,
by a slightly degraded grid, for which we don’t need
the floor function. The technique that we use appears
already in [5, 7].

Acknowledgements: The authors would like to thank
Ian Munro for useful discussions and Kurt Mehlhorn for
turning our attention to the tail estimate in [4].

References

[1] M. Ben-Or. Lower bounds for algebraic decision
trees. Proc. 15th Annual ACM Symp. on Theory
of Computing, 1983, pp. 80-86.

[2] J.L. Bentley and M.I. Shamos. Divide-and-conguer
in multidimensional space. Proc. 8th Annual ACM
Symp. on Theory of Computing, 1976, pp. 220-230.

[3] M. Dietzfelbinger and F. Meyer auf der Heide. 4
new universal class of hash functions and dynamic
hashing in real time. Proc. ICALP 90, Lecture
Notes in Computer Science, Vol. 443, Springer-
Verlag, Berlin, 1990, pp. 6-19.

[4] K.E. Clarkson, K. Mehlhorn and R. Seidel. Four
results on randomized incremental constructions.
Proc. 9th Symp. on Theoretical Aspects of Com-
puter Science (STACS 92), Lecture Notes in Com-
puter Science, Vol. 577, Springer-Verlag, Berlin,
1992, pp. 463-474.

[5] M. Golin, R. Raman, C. Schwarz and M.
Smid. Randomized data structures for the dynamic
closest-pair problem. Proc. 4th ACM-SIAM Symp.
on Discrete Algorithms, 1993, pp. 301-310.

(6] S. Khuller and Y. Matias, A simple randomized
sieve algorithm for the closest-pair problem. Proc.
Third Canadian Conf. on Computational Geome-
try, (1991), pp. 130-134.

[7] H.P. Lenhof and M. Smid. Enumerating the k
closest pairs optimally. Proc. 33td Annual IEEE

Symp. Foundations of Computer Science, 1992, pp.
380-386.

[8] M. Rabin, Probabilistic algorithms, in “Algorithms
and Complexity: New Directions and Recent Re-
sults (J.F. Traub ed.),” (1976), pp. 21-39.

251

[9] J.S. Salowe. Shallow interdistance selection and
interdistance enumeration. International Journal
of Computational Geometry & Applications 2
(1992), pp. 49-59.

[10] C. Schwarz, M. Smid and J. Snoeyink. An opti-
mal algorithm for the on-line closest pair problem.
Proc. 8th ACM Symp. on Computational Geome-
try, 1992, pp. 330-336.

[11] R. Seidel. Small-dimensional linear programming
and conver hulls made easy. Discrete Comput.
Geom. 6 (1991), pp. 423-434.

[12] R. Seidel. Backwards analysis of randomized ge-
ometric algorithms Report TR-92-014, Computer
Science Division, University of California Berkeley,
Feb. 1992.

