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Abstract

Given a set of points S in R4, where d > 0 is an ar-
bitrary constant, the closest-pair problem is to compute
the closest pair of points in S in the Euclidean metric.
In the on-line closest-pair problem, the points of S are
given for insertion one at the time by an adversary, and
the closest pair must be computed after each insertion.
In a generalized problem, the B-on-line closest-pair prob-
lem, the points are inserted in batches of size 8, and the
closest pair must be computed after each insertion. In
this paper we give a simple and efficient algorithm for
the B-on-line closest-pair problem. Also presented are: an
output-sensitive algorithm for the on-line problem, an on-
line algorithm for points taken from a bounded universe, a
{B;}-on-line algorithm, where batches are given in differ-
ent sizes B1, B,. .., and a new incremental algorithm for
the off-line problem. The e-closest bichromatic pair prob-
lem is to compute a bichromatic pair in S whose distance
is within a (1+¢) factor from the closest bichromatic pair.
We present simple and efficient algorithms for the semi-
dynamic versions of the e-closest bichromatic pair prob-
lem. Also considered is the on-line-deletions closest-pair
problem, where a set S is initially given and its points are
deleted one at the time by an adversary, and the closest
pair of the remaining set is computed after each deletion.
We show that the on-line-deletions closest pair problem
is at least as hard as sorting.

1 Introduction

Given a set S of n points in R4, the closest-pair problem
is to find the closest pair of points in S, in the Euclidean
metric. This simply stated problem can be found in al-
most any algorithms text-book as a basic problem in com-
putation geometry (see, e.g., [6, 19, 22]). The problem
has several dynamic variants, in which the set of points
S is changing dynamically by inserting new points into S
and deleting existing points from S; the problem then is
to compute and maintain a data structure that enables
efficient closest-pair queries. In this paper we consider
several semi-dynamic variants and provide simple and ef-
ficient algorithms. We also consider the related problem

of e-closest bichromatic pair, and provide efficient algo-
rithms for semi-dynamic versions of this problem.

1.1 Related work

The off-line problem  For the off-line closest pair
problem, in which all the points of S are given initially
and only the closest pair of S needs to be computed, sev-
eral algorithms were given. Deterministic algorithms that
run in O(nlgn) time are due to [4, 5, 16, 28]. These algo-
rithms are optimal in the algebraic decision-tree model of
computation, where a matching lower bound of Q(nlgn),
even for the 1-dimensional closest-pair problem, is im-
plied by a lower bound for element distinctness [2, 33].
The lower bound only holds when the floor function is
not allowed, as was shown by Fortune and Hopcroft [10],
who obtained an O(nlglgn) deterministic algorithm by
making use of the floor function. A linear time random-
ized algorithm which uses the floor function was given
by Rabin in his seminal paper [23]; his algorithm uses
a random sampling technique. Another linear time ran-
domized algorithm, using a new sieving technique, was
recently given in [17].

The on-line problem Assume that a set S of n points
in R¢ is given by inserting one point at a time, with
the points given dynamically by some arbitrary adversary
(possibly adaptive). The on-line closest pair problem is
to find, after each insertion, the closest pair in S (in the
Euclidean metric). There has been a sequence of papers
studying the on-line version of the problem. Smid [29]
gave an algorithm that computes the closest pairs on-line
in O(n(lgn)?"1) total time; the algorithm uses only alge-
braic functions and is therefore optimal for the planar case
in the algebraic model. He also gave an algorithm that
using the floor function takes O(n(Ign)?/1glg n) time (for
any fixed d). Subsequently, Schwarz and Smid [26] gave
an O(nlgnlglgn) time algorithm (for any fixed d), also
using the floor function. Finally, very recently Schwarz
et al. [27] gave an algorithm that takes O(lg n) amortized
time per insertion. Their algorithm uses only algebraic
functions and is hence optimal in the amortized algebraic
model.

The on-line-deletions problem In the on-line-
deletions closest-pair problem, the set S is given initially,



and its points are deleted one at the time. After each dele-
tion the closest pair of the new set needs to be computed.
Supowit [32] gave an a §onthm with O(lg n) amortized
update time and O(nlg®~! n) space.

The fully dynamic problem A more general problem
is the fully dynamic closest-pair problem, in which points
are inserted into as well as deleted from the set. Smid [31]
gave an algorithm which uses O(n lg? n) space and takes
O(lg? nlglgn) amortized time per update. A linear space
algorithm, with O(y/nlgn) time per update is a result of
the works of Smid [30], Salowe [25], and Dickerson and
Drysdale [7]. Very recently, Golin et al. [14] presented an
algorithm which supports insertions into and deletions
from the set in expected O(lgn) time and requires O(n)
expected space. Their algorithm uses the floor function
and assumes the updates are chosen by an adversary who
does not know the random choices made by the algorithm;
they also show how to get an algorithm for the algebraic
tree model, with O(lg? n) expected time per insertion.

Approximate closest bichromatic pair A general-
ization of the closest-pair problem is the following clos-
est bichromatic pair problem: Given a set of n colored
points in R¢, for some constant d > 0, find the closest
pair of points that are colored differently (“bichromatic
pair”); i.e., find a point p and a point ¢ that have dif-
ferent colors, such that the distance between p and q is
minimum among all the bichromatic pairs. An instance
of the problem where each point is colored by one of two
colors was considered by Agarwal et al. [1]. For an input
consisting of m red points and n blue points from %2 (i.e.,
for d = 3), they give a randomized a,lgonthm runmng in
expected time O((nmlgnlgm)?/® + mlg?n + nlg?m).
(This has applications in solving the Euclidean minimum
spanning tree problem as was shown by [1].) An approx-
imation problem, the e-closest bichromatic pair problem,
was considered by [17]. In this problem, a bichromatic
pair is found whose distance is within a factor of (1 + )
from the distance of the actual closest bichromatic pair.
For any fixed ¢ > 0 the algorithm given in [17] takes O(n)
expected time and O(n) space. We are not aware of any
previous algorithm for the dynamic or semi-dynamic ver-
sions of this problem.

1.2 Results

In this paper we give simple and efficient algorithms for
various semi-dynamic closest-pair problems.

Batch-on-line algorithms  We consider the S-on-
line closest pair problem, in which points are inserted
in batches of size B each. An algorithm is presented that
uses O(n) space; inserting the next batch into a set of size
n takes O(B1g(n/pB)) time with high probability. (For in-
stance, Ign batches of size n/ Ig n each are inserted on-line
in O(nlglgn) total time.)

To our knowledge, this is the first algorithm that deals
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with this rather natural extension.

An efficient parallel algorithm is given as well in which,
using (3/1g" B processors on a CRCW-PRAM, a batch
is inserted in O(lg(n/B)1g" B) time with high probabil-
ity. (For instance, lgn batches of size n/lgn each are
inserted on-line in O(lglgnlg” n) total parallel time, us-
ing n/(lgnlg” n) processors.) Note that for 8 = 1, we get
a paralle] on-line algorithm where each insertion takes
O(lg" n) time and O(lgn) operations with high probabil-
ity, using linear space.

A varying-size batch-on-line algorithm Also
presented is an algorithm for a generalized prob-
lem, the {B;}-on-line closest pair problem, where the
batches of inserted points are of possibly different sizes
B1,B2,...,Bn. A point of the j’th batch is inserted in
time O((lgn —1g ;1) + (Ign —1g B;)) or in time O(Ign’)
with high probability, using linear space.

An output-sensitive algorithm An output-sensitive
algorithm for the on-line closest-pair problem is pre-
sented, in which the insertion time depends on the
frequency in which the closest-pair distance actually
changes. If we let the set of points inserted between
two changes of the closest-pair distance be called a batch,
then the complexity of the output-sensitive algorithm is
the same as the complexity described above for the {3; }-
on-line closest pair algorithm. We are not aware of a
comparable result in previous papers.

An on-line algorithm with bounded domain We
consider the on-line closest pair problem for points taken
from a bounded universe {1,...,u}*. Using the output-
sensitive algorithm, we get an algonthm with O(lglgu)
time per insertion in the worst case. The algorithm can
be implemented in linear space and O(lglgu) time per
insertion, with high probability.

An incremental off-line algorithm Using the output-
sensitive algorithm, we present a new incremental algo-
rithm for the off-line closest pair problem that takes linear
expected time. This algorithm complements the previous
algorithms, that are based on a random sampling tech-
nique and on a sieving technique, with a third different
and well known technique for this basic problem. A dif-
ferent incremental algorithm was recently developed in an
independent work by Golin et al [15].

Semi-dynamic e-closest bichromatic pair algo-
rithms The algorithms for the closest-pair problems
are extended to e-closest bichromatic pair algorithms: we
give an on-line algorithm, a B-on-line algorithm, a {8, }-
on-line algorithm, an output-sensitive algorithm, an on-
line algorithm in bounded universe, and an incremental
off-line algorithm, all with similar performances to those
of the closet-pair algorithms. To our knowledge, these are
the first algorithms of their kind.

Hardness of on-line deletions algorithms We show
that the on-line-deletions closest-pair problem is at least
as hard as sorting. In particular, we give a simple reduc-
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tion of sorting to the on-line-deletions closest-pair prob-
lem in R

Our algorithms are based on a basic on-line closest-
pair algorithm presented by Schwarz and Smid [26]. This
algorithm uses a dynamic data structure that is an ap-
plication of Bentley’s logarithmic method for decompos-
able searching problems [3]. We describe how to modify
the on-line algorithm to obtain worst case time bounds,
rather than amortized (there are other ways to obtain
this), and give an efficient parallel implementation.

The rest of the paper is organized as follows. The ba-
sic on-line closest pair algorithm is given in Section 2. In
Section 3 the extensions to the B-on-line algorithms (se-
quential and parallel) are presented. The output-sensitive
algorithms with the applications for the on-line algorithm
over a bounded universe and to the {; }-on-line algorithm
are given in Section 4. The incremental algorithm for the
off-line closest pair is given in Section 5. The algorithms
for the respective e-closest bichromatic pair problems are
given in Section 6. The reduction of sorting to on-line-
deletions closest-pair is given in Section 7. Conclusions
and several open questions are given in Section 8.

2 The on-line algorithm

Our algorithm maintains a dynamically changing data
structure, related to those described in [21]. A set S of
n points (which were already inserted) is partitioned into
n+ 1 subsets So, S1,...S,, for n = [Ign] (some of them
perhaps empty). For i; > i3, points in S;, will be more
recent than points in S;, ; a new point will first be inserted
into So and will be “upgraded” later to S;, then to S,
etc. For i =0,1,...,n let §; be the closest pair distance
in S US,-1U---US;. Thus, §; will be the closest-pair
distance over the first 3 7_, |S;| points. For each non-
empty subset S; the data structure holds a virtual mesh
of size §;, in R®¢. For each non-empty cell in the virtual
mesh of S; we keep a list of the points in S; which are in
that cell. '

The partition into subsets is defined as follows. Let
i = (n,,...,n1,n0) be the binary representation of n.
Then, for each i = 0,1,...,7, |S;| = 2", It is easy to
see that indeed |S| = Y"7_, |S:|.

Inserting a new point z into S is done as follows:
0. S~ Su{z}.
1. Update 6(S).

2. Let i be the least significant zero in @ (i.e., S; = ®
and Sy, S;...,S;_1 are not empty).

3. S —S;_1 USi_zU*--USoU{z}.
4. 6; — 6(9).
5. Compute the virtual mesh for S;.

6. Forj=i—1,i—2,...,0let S; — &®.
7. n—n+1; 7« [ign].

The only steps in which the computation is not
straightforward are steps 1 and 5. In a virtual mesh,
let the neighborhood of point z be the cell containing z
and the 3% — 1 neighboring cells (see Figure 1 for the case
d = 2). For a mesh of size b, the following facts can be
easily verified:

(1) All points whose distance from z is at most b are in
the neighborhood of z.

(2) If S’ is a set of points and b < §(S’) then the neigh-
borhood of a point = contains at most a constant
number of points from S’.

2v/2b

Figure 1: Neighborhood of a point =

Implementation of Step 1 The closest distance §(S)
needs to be updated only if the closest pair in S U {z}
is (z,y) where y € S; for some i = 0...,5. In this
case, note that y must be in the neighborhood of z
in the virtual mesh of S; (by Fact (1) above). There-
fore, for each i = 0,1,...,7 we compute the distance
dist(z,y) for all y in the neighborhood of z in S;, and
compare this distance to §(S). If any of these distances
satisfies dist(z,y) < 6(S) then we update §(S) to be
dist(z,S) = min{dist(z,y) : y € S}. Since each neigh-
borhood contains at most a constant number of points
(by Fact (2) above) this step takes O(n) time.

Implementation of Step 5 Computing the virtual
mesh for S; takes O(|S;|) steps: for each point in .S; we
compute its cell and append the point to the list of its
cell. We also need to enable constant access time to the
list of each cell. This can be done by using a lookup table,
which can be implemented using indirect addressing and
unbounded memory. A linear-space hash table with con-
stant lookup time can be computed in linear time, with
high probability [11, 8]. For our algorithm we will need
to use dynamic-hashing, in which keys are dynamically
inserted into and deleted from the hash table. We will
use a “real-time” dictionary algorithm which, using lin-
ear space at all time, supports each insertion, deletion, or
lookup in constant time, with high probability [9, 8]. In



the rest of the paper we will not explicitly mention the
use of the dictionary algorithm.

Complexity Computing a virtual mesh in Step 5 can
take O(n) time in the worst case. However, it only takes
O(lgn) amortized time per insertion: Note that when m
points are moved into a new subset it takes O(m) time
to compute a virtual mesh for the new subset; i.e., it
takes O(1) amortized time per point. For a set of size
n, a point could have only moved into 5 + 1 new subsets
and therefore the amortized insertion time per point is
O(n) = O(lgn).

From amortized to worst case time Instead of
stalling the algorithm until the virtual mesh for the up-
dated subset S; is computed, continue to insert points
while computing the virtual mesh in the “background.”
Specifically, we start a background process in which
points from {z} U Sp U S; U ---U S;_; are inserted into
the set S;. First z is inserted, then the points from Sp,
S1, etc. The meaning of “background process” is that
for each operation of the regular insertion process, there
are a constant number of operations for the background
process. Note that in the regular insertion process, we
may start more background processes: after another 2¢
points are inserted, they. all need to be moved from sets
So0,S51,...,Si-1 into a new set S;;. However, by an ap-
propriate slowdown of the insertion process in favor of the
background process we guarantee that by the time 2¢' — 1
new points are inserted into Sp, 51, ..., Si—1, all the pre-
vious points of S;: are already moved into S;; this holds for
i =0,1,...,7— 1. Therefore, we never have interference
between background computations, and the number of
sets in the data structure is always 7+ 1. Moreover, since
in the insertion process each query takes O(lgn) time,
we can afford running up to lgn background processes,
which is in any case an upper bound for the number of
such processes in the data structure.

Parallel implementation Step 1 can be implemented
easily in parallel: Using lgn processors, the O(lgn) dis-
tances can be computed in constant time in parallel, and
their minimum can be computed in constant time with
high probability [24]. In Step 5, we need to append points
of S; into their lists in parallel. We know that each list
will contain at most a constant number of points, and
therefore this can be implemented using |S;| processors in
constant time, using indirect addressing into unbounded
memory. Linear-space implementation can be obtained
by using parallel hashing; a linear-space hash table for
the lists with constant lookup time can be computed in
O(lg* n) time and O(|S;|) operations with high probabil-
ity [20, 13].

We have

Theorem 1 In the on-line closest pair algorithm, each
point can be inserted into a set of size n in O(lgn) time
in the worst case; it can also be implemented using O(n)
space and O(lgn) time per insertion with high probabil-
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ity. Usinglgn/lg* n processors on a CRCW PRAM, each
insertion can be processed in O(lg" n) time with high prob-
ability (optimal speedup).

3 The (-on-line algorithm

If points are inserted in n/@ batches of size § each
then we modify the on-line algorithm as follows. Let
n’ = n/f be the number of batches already inserted into
the set S and X be a new batch to be inserted. Let
@' = (ny.,...,nq,np) be the binary representation of n’,
where 7' = [lgn’]. The set S is partitioned into subsets
So0,81,...,Sy such that, for all i = 0,1,...,7, |S;| =
B - 2" Tt is easy to see that indeed |S| = E"' 1S;].

i=1
Inserting a new batch X of 8 points into S is similar
to the algorithm in Section 2:

0. S—SUX.
1. Update 8(S).

2. Let 7 be the least significant zero in @' (i.e., S; = @
and Sp, S ..., S;i_1 are not empty).

3. Si—Si1USisgU---USoUX.

4. 6; — §(S).

5. Compute the virtuair;lesh for S;.

6. Forj=i—1,i—2,...,0let S; — ®.

7.0 —n'+1; 7 — [Ign].

The implementation is the same as in the on-line al-
gorithm, except for Step 1, which is computed as follows:

6(S) — min {6(S), §(X), dist(X,S)} ,

where dist(X,S) = min{dist(z,y) :z € X,y € S}. The
distance dist(X,S) can be computed in O(B) time, by
computing for each point z € X its distance to S,
dist(z, S) = min{dist(z,y) : y € S}, as in the on-line al-
gorithm. The distance §(X) can be computed in O(f)
time with high probability, using an off-line closest pair
algorithm [23, 17].

The B-on-line problem is also natural in the parallel
context, in which at each parallel step, 8 new points are
inserted into the set. Indeed, all steps in the B-on-line
algorithm above can be done in parallel in constant time
in a straightforward manner, except for the computation
of §(X). This computation can be done in constant time
with high probability, using 3 processors and unbounded
space [18]. Parallel computation in O(n) space can be
done by using a parallel hashing algorithm which takes
O(lg" B) time and O(B) operations with high probabil-
ity [20, 13]. We will also need a parallel dictionary al-
gorithm which supports parallel insertions into and dele-
tions from the hash table. Insertions and deletions of 3
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keys can be implemented in O(lg* 8) time and O(8) op-
erations, with high probability [13]. The parallel imple-
mentation of queries and insertions are as in the on-line
algorithm.

We therefore have,

Theorem 2 In the B-on-line closest pair algorithm, each
batch of B points is inserted into a set of size n in
O(Blg(n/B)) time with high probability, using O(n) space;
it can also be inserted in O(Ig" n) time with high proba-
bility, using Blg(n/B)/1g" n processors and O(n) space.

4 An output-sensitive algorithm

The $-on-line problem generalizes both the off-line clos-
est pair problem (with 8 = n) and the on-line closest pair
problem (with 8 = 1). The (-on-line problem demon-
strates that performance of an algorithm may depend pri-
marily on the number of times §(S) actually changes. We
show that in fact it may depend on the exact locations (in
the sequence of input points) where these changes occur.
This fact is shown below by modifying our algorithm to
be output-sensitive.

4.1 A basic algorithm

Denote the set of points between the (j — 1)St time and
the jth time that §(S) changes as the jth batch. Let §;
be the number of points in the jth batch. Each subset S;
will now be a set of batches rather than a set of points; a
non-empty set S; contains 2¢ batches, but perhaps many
more points. Let n’ be the number of batches. Then, the
number of sets S; is n' + 1 = lgn’ + 1. In addition to the
subsets Sp, S1,...,Sy/, we keep a set X that contains all
the last points z that did not change §(S), and a virtual
mesh of size §(S) for X. Thus, S is partitioned into S =
XUSpUS1U...US,:. Given a new point z, we compute
dist(z, S) as before; if dist(z,S) > §(S) then z is inserted
into X and appended to the list of «’s cell in the virtual
mesh of X. If dist(z,S) < 6(S) then we update §(S) to
be dist(z,S) and move z and the points of X to be in
SoUS1 U...US, . The insertion is the same as in the
on-line algorithm, except that n is replaced by n’ and =
is replaced by X. We get

Theorem 3 In the oulput-sensitive on-line algorithm
each point is inserted in O(Ign’) time in the worst case;
it can also be implemented using O(n) space and O(Ign’)
time per insertion with high probability.

4.2 A more sensitive algorithm
The algorithm given above is sensitive to the number of

times §(.S) changes. However, it is not sensitive to exactly
when these changes occur. In particular, large batches

and small batches are treated equally. To see the inef-
ficiency of such a treatment, consider an input sequence
consisting of 1/n batches of size 1, followed by a large
batch of size n — 24/n, followed by /n batches of size
1. The algorithm above will take O(lgn) time per inser-
tion, while O(1) amortized time can be easily achieved by
keeping the large batch in a separate data structure. The
output-sensitive algorithm below takes into account the
sizes of batches. The insertion of a new point z to S is
done as follows:

0. S~ Su{z}.
1. Update §(S5).

2. Let i, = [lg|X]|] and
i=min{i : S =& and ¢ > i;}.

S; — S;—1 L.J.S'i_zUH-U.S','z U X.
&; — 8(S).
Compute the virtual mesh for S;.

Forall j,i> j > is, let S; — @.

I O

n —n' +1; 7 « [lgn].

By the amortization analysis in Section 2, the amor-
tized insertion cost for each point in X is O(lgn—1g|X|);
intuitively, each point has “jumped” directly into the
iz’th level, thus saving i, “upgrades.” To improve on
the time, however, we also need to save in the query time
of Step 1; namely, we need to reduce the number of sets
in the partition of S. To accomplish that, along with in-
serting points into a set X, we process a “background”
computation in which points from the sets Sg, S1, ... are
inserted into a combined set Y. After X is inserted, as
above, set Y is inserted as well in a similar way. By
having a constant slowdown in the insertion process in
favor of the background computation of Y, we can get
|Y| > | X|, meaning that the number of non-empty sets in
the partition becomes at most Ign — 1g|X|, as required.

The query time and amortized insertion time for
a point in the j’th batch are therefore O(lgn —
lgBij-1) and O(lgn — lgpB;), respectively. (Note
that the first bound might be quite pessimistic.)
Therefore, the query time and amortized insertion

time per point are O (% E;‘I:l Bi(lgn —1g ﬁj_l)) and

() (% ;';1 Bi(lgn —1g B; )), respectively. Using similar
techniques to those described in Section 2, the insertion
time can be made worst case, rather than amortized. Let

FUBY = 157, 6 (lgn—1gBi-1) + (gn —1g5;)).
We get

Theorem 4 For baiches of sizes B, Bz, . .., defined
as above, the outpui-sensitive on-line algorithm takes
O(F({B;})) time per insertion in the worst case; it can
also be implemented using O(n) space and the same time,
with high probability.



4.3 Further improvements

There are two more improvements that can be obtained
for certain sequences, both regarding the updating crite-
ria:

Relazation: The definition of “a change in 6(S)” is relaxed
to “a change in 6(S) by a factor of ¢,” where ¢ > 1. This
results in a slowdown of computing dist(z, S) by at most a
factor of ¢, but may result with more favorable sequences
of B1,B2,-..,Bn. In fact, this relaxation is used below
to obtain better performance in the worst case for input
taken from a bounded universe.

Adaptation: When 6(S) changes, we essentially want to
update the virtual mesh X because the number of points
in a cell may become large, implying a large query time
per point. However, the actual performance may be quite
different; it may well be the case that even though §(S)
changes, the query time of a new point into the virtual
mesh of X remains small. We adapt the updating strat-
egy to the actual performance in run time:

Let Z be the future size of X when X will be inserted
into the data structure; let k be the number of sets in the
data structure; let ¢ be the number of queries of points
within X. Our objective is to delay the insertion of X
into the data structure as much as possible, i.e., to get
as large Z as possible. We have to make sure however
that g does not become too large. The idea is to amortize
¢ against the other necessary costs. We know that for
points in X the query time in other sets is O(k) per point
and the future amortized insertion time is O(lgn — Igz)
per point. Accordingly, we allow ¢ = O(Z(k+1g n—Ilg z)).

4.4 A {B;}-on-line algorithm

We note that for 8y = B, = - - - = B, = B we get the same
complexity as for the S-on-line problem: O(lgn — lgg)
per insertion. Also, if the points are given in batches
of sizes B1,fs,... then we can get a similar complexity
to that of Theorem 4 by using techniques from both the
above output-sensitive algorithm and from the B-on-line
algorithm of Section 3. Note that if the points of a batch
are inserted one at the time, then §(S) may change several
times, unlike the case in the output-sensitive algorithm,
where this cannot happen by definition. We thus extend
the B-on-line algorithm to the more general case.

Theorem 5 The on-line problem in which points are
given in batches of sizes By,Pa,...,Bn can be solved in
O (min{lgn’, F({B;})}) time per insertion in the worst
case with high probability, using O(n) space.

4.5 An on-line algorithm in a bounded
universe

Assume that the points are given from a bounded uni-
verse U¢, where U = [1,2,...,u] (as is often the case in
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practice). We use the relazation rule from Section 4.3:
6(S) must change by a constant factor before any up-
date action is taken. Since for distinct points we have
1<46(S) < v/du, the number of updates can be at most
n’ = O(lgu + lgd). Therefore, by Theorem 3 we have

Theorem 6 The on-line closest-pair problem with points
taken from U? can be solved such that each insertion takes
O(lglg(u + d)) time; it can also. be implemented using
O(n) space and O(lglg(u + d)) time per insertion with
high probability.

5 An incremental off-line algo-
rithm

Given a set S of n points, we compute the closest pair for
S by the following incremental algorithm:

1. Randomly permute the elements in S.

2. Insert the points according to the random permutation
and apply the output-sensitive algorithm of Theo-
rem 4.

A random permutation can be computed easily in lin-
ear expected time. We show below that the performance
of the output-sensitive on-line algorithm for a random
permutation of any given set S is linear expected time as
well.

Lemma 7 Given a subset S’ of k points selected at ran-
dom from the set S and its closest distance §(S'), the ez-
pected number of points that will be inserted into S’ before

6(S’) is changed is Q(k).

Proof. Omitted. ‘ L]

As a result, we get E(8;) = Q61 + B2 + - + Bj-1)
and as can be easily shown by induction E (5;) > ¢2/,
for some constant ¢ > 0. By convexity arguments we get
2 Bi(2lgn—lgBi_1-1gB;) < X°; c2(2lgn—2lgc—j+
1-j) < 32, /n2~'8"(Ign — j), for some constant ¢’ > 0,
and by changing j to (Ign — j) we get > ; Bi(2lgn —
lgBj—1—lgB;) < 3°;¢'n279(5) = O(n) .

We therefore have
Theorem 8 The incremental algorithm solves the off-

line closest pair in O(n) ezpected time and O(n) space.

6 Algorithms for e-closest bichro-
matic pair problems

The algorithms are similar to the semi-dynamic closest
pair algorithms, and have similar performances. They



270

incorporate modifications that are based on the off-line
e-closest bichromatic pair algorithm of [17].

Due to space limitations, we only describe the facts
that are the basis for the modifications. Let §(S) be the
distance of the bichromatic closest pair in a set S. In
a mesh of size §(S) each cell contains points of only a
constant number of different colors. However, a cell may
contain many points of the same color. As in [17], con-
sider a refined virtual mesh of size €6(S)/9, and for all
points of the same color in a non-empty cell select one
(arbitrarily) as a representative. It follows that the clos-
est bichromatic pair over the representatives is of distance
which is larger than §(S) by at most a factor of (1 + ¢)
(see [17] for details). For a constant ¢ > 0, the number of
representatives in each neighborhood (in the mesh of size
6(S)) is constant (specifically, it is O(1/¢?)).

7 On-line deletions is as hard as
sorting

We give a simple reduction from sorting to on-line-
deletions closest-pair computations in ®!. (The reduc-
tion is a “Karp-reduction” in the sense that the on-line-
deletions closest-pair algorithm is used as a subroutine in
the sorting algorithm.) Let S be a set of input points to
be sorted. An algorithm for the on-line-deletions closest-
pair problem will be used to sort S. Our sorting algorithm
will consist of n — 1 iterations; at each iteration a closest
pair computation will be done, a constant number of data
processing steps will follow, and one point will be deleted
from the set.

At each iteration, the closest-pair computation will en-
able to compute the successor of one of the input points.
The main idea is that these two points can be represented
by only one of them for further processing. More gener-
ally, at each iteration each point represents a subset of
consecutive points from the output (sorted) set that were
merged into the subset in previous iterations. The or-
dering between points in each subset is already known.
Each closest-pair computation results with merging the
two sets represented by the points of the closest pair.

More formally, let So = S and for ¢ > 1 let S; be the
set of points after the ith deletion. As an invariant the
algorithm will keep the following properties:

P1. Each point z € S; represents a subset S* of points
in S, and each point of S is represented by exactly
one point in S;. Also, z € S®.

P2. Let 2’ = min{S®} and z” = max{S®}. Then,
S® = {y€ S:ye€[z,z"]}; ie., the partition of S
into Uzes;S® is an ordered partition.

P3. For each point in S% \ {z”} the successor in S is
already known; similarly, for each point in §% \ {z'}
the predecessor in S is already known.

It is clear from the above that if the invariant is kept then
after the (n—1)’st deletion we know for each element in S
its successor and its predecessor and we have a sorted list.
It remains to show how the algorithm with this invariant
proceeds. The ¢’th iteration of the algorithm is as follows.

Iteration i:

1. Compute the closest pair (p, ¢) in S;—; (assume, with-
out loss of generality, that p < g).

2. Complete successor/predecessor information for p”
and for ¢': let suce[p”] — ¢'; pred[q’] — p".

4. Merge SP and S? into SP: let SP — SP U S9.
5. Delete ¢: let S; — S;—1 \ {q}.

3. Update p": let p” «— ¢".

It is straightforward to show by induction that the
invariant properties hold. We have

Theorem 9 The problem of sorting n numbers can be
reduced in linear time to the on-line-deletions closest-pair
problem for a set of size n from R,

8 Conclusions

We presented a simple and efficient algorithm for the
batch-on-line closest pair problem whose complexity de-
pends on the sizes of batches; in the extreme cases of
on-line and off-line problems (batches of size one in the
former and a batch of size n in the latter) the algorithm’s
performance matches the best known algorithms for these
problems. We also presented an output-sensitive algo-
rithm; motivated by the fact that as long as the closest
pair distance does not change, the situation should be no
worse than in the off-line algorithm, the output-sensitive
algorithm adapts itself to be more efficient on “good”
input sequences. Its usefulness is demonstrated by two
applications: an efficient on-line a.lg_orithm for points in
a bounded universe: O(lglgu) time per insertion for a
universe of size u, and a linear expected time incremental
algorithm for the off-line problem. Can this approach be
useful for getting a more efficient on-line algorithm in the
worst case?

We have considered semi-dynamic algorithms for the
e-closest bichromatic pair problem and gave efficient al-
gorithms, similar to the algorithms given for the closest
pair problems. The problem of finding efficient algorithms
for the exact (off-line or on-line) bichromatic closest pair
problems remains open.

We showed that the on-line-deletions closest-pair
problem is at least as hard as sorting, even for points
taken from R!. While this is not new for the algebraic



model, this has implications for the non-algebraic mod-
els. Note that for the non-algebraic model, sorting can
be computed in O(n+/Ign) expected time using the Fu-
sion Tree data structure of Fredman and Willard [12]. An
open question on the positive side is: Can Fusion Trees
help to get a faster on-line algorithm with deletions?
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