315

On the Notion of Completeness for Reconstruction Algorithms

on Visibility Graphs

(Extended Abstract)

G. Srinivasaraghavan*

1 Introduction

The visibility graph of a scene is a graph with a
vertex for every object of the scene, and an edge
between two objects if the two are visible to each
other. There have been two main directions in the
study of visibility graphs—one algorithmic in na-
ture and the other graph theoretic. In the first,
one wants to compute the visibility graph of a given
scene efficiently. In the second, one studies graphs
which are realizable, as combinatorial objects in
their own right. One looks for properties which
characterize such graphs, algorithms that can iden-
tify such a graph efficiently, algorithms that can re-
construct a scene which is a realization of a given

graph etc..

This is a speculative note on what we call
the Completeness criterion for reconstruction algo-
rithms on visibility graphs. This notion of com-
pleteness for reconstruction algorithms we feel is
a highly desirable feature and possibly necessary
too, for a deep understanding of the combinatorial
nature of visibility. In this note, we introduce the
notion and illustrate it with an algorithm which re-
constructs a horizontally convez orthogonal polygon
(henceforth denoted as HCOP) from its orthogonal

*The Institute of Mathematical Sciences, C.I.T Campus,

Madras-600113, India. Email: gsr@imsc.ernet.in
tDepartment of Computer Science and Engineering, In-

dian Institute of Technology, Kanpur-208016, India. Email:
am@iitk.ernet.in

Asish Mukhopadhyay!

edge visibility graph consisting of a pair of trees,
one of which is a caterpillar. We also sketch how
the algorithm can be used as a ‘skeleton’ to arrive
at an algorithm which reconstructs such a polygon
realizing a weighted pair of trees. Our algorithm
is a complete version of the algorithm for the same

problem by O’Rourke [1]. .

The rest of this note is organized as follows.
In section 2 we introduce the notion of Complete-
ness. In section 3 we review briefly the algorithm
of O’Rourke [1], which reconstructs a HCOP from
a pair of trees, one of which is a caterpillar. We
give our ‘complete’ version of the algorithm in sec-
tion 4 and follow it with an algorithm to carry out
the reconstruction from a pé.ir of weighted trees in
section 5. We end with some concluding remarks in
section 6. We omit most of the details and proofs
in this abstract. Full details can be found in [2].

2 The Notion of Complete-

ness

A visibility graph is a combinatorial representation -
of a scene. From the way visibility graphs are de-
fined it is evident that given a scene and a particu-
lar notion of visibility, the corresponding visibility
graph is unique. On the other hand in reducing
the scene to a graph, quite a bit of informaﬁon
(mostly metric information) is lost. Thus usually,

316

many different scenes end up having the same vis-
ibility graph. Typically a reconstruction algorithm
can potentially produce a whole class of scenes all
of which have the same visibility graph (the given
one). However it appears that the possibility of re-
construction algorithms which can potentially pro-
duce every scene with the given graph as the visibil-
ity graph has not been investigated in the literature
on visibility graphs so far. An algorithm complete
in this sense, would we feel throw much more light
on the relationship between scenes and their visi-
bility graphs in general. Also it is likely that such
‘complete’ algorithms, would pave the way to al-
gorithms which handle ‘weighted’ visibility graphs,
under some suitable interpretation of the weights.
In this paper we introduce this notion of ‘complete-
ness’ of a reconstruction algorithm with a complete
algorithm, though in a restricted sense, for recon-
structing a horizontally convex polygon from its
“visibility graph.

3 Reconstructing HCOPs

The visibility graph of a given orthogonal polygon
P consists of a vertex e for each edge e* of P with
two vertices e and f of G being adjacent if the two
corresponding edges e* and f* are such that there
exists a rectangle of non-zero aréa, wholly con-
tained in the interior of P with two opposite sides
of the rectangle on e* and f* (e* and f* are then
said to see or be visible to each other). O’Rourke
[1, Lemma 7:3] has shown that the visibility graph
of a simple orthogonal polygon consists of two dis-
connected trees, one each for the edges parallel to

one of the axes (horizontal and vertical).

A HCOP is an orthogonal polygon which
intersects any horizontal line in a single connected
segment. We henceforth refer to simple HCOPs
in general position (those in which no two vertices

can be joined by a horizontal or a vertical segment

lying wholly in the interior of the polygon) simply
as ‘polygons’.

A caterpillar is a tree which has a path—
called the spine—such that every vertex of the tree
not on the path is a leaf. It was also shown in [1]
that the visibility graph of a HCOP consists of a
pair of trees having the same number of vertices,
one of which (the component corresponding to the
vertical edges of P) is a caterpillar and that for ev-
ery pair of trees one of which is a caterpillar, there
exists an orthogonal polygon (not necessarily hori-
zontally convex) whose visibility graph is the given
pair. O’Rourke [1] has.also given an algorithm to
reconstruct a HCOP from such a pair of trees. This
algorithm is clearly not complete because it can
produce only HCOPs. In fact it is incomplete in a
stronger sense; it cannot even produce all the pos-
sible HCOPs from the given pair of trees. Here we
modify the algorithm in [1] to remove the latter
incompleteness. Henceforth we use the term ‘visi-
bility graph’ to mean an orthogonal edge visibility
graph. v

We use the labels T and C to refer to the
vertical and the horizontal visibility trees of our
polygon. Note that C is a-caterpillar. If TUC'is
the visibility graph of a polygon P, then we denote
the edge of P corresponding to the vertex v of the
visibility graph as, v* and vice-versa. ’

3.1 Review of the known algorithm

We now give a brief description of the reconstruc-
tion algorithm in [1]. The algorithm attempts to
reconstruct a polygon from a tree T and a caterpil-
lar C. Any tree has a unique bipartition and so has
a caterpillar. It would be convenient for us to refer
to the partitions of C as the left and the right parti-
tions, having [and r vertices respectively. Suppose
T has an edge e which admits an embedding of T
which maps e to a vertical line segment, and em-
beds I — 1 vertices of T to the left of e and 7 — 1

to the right. It is easily shown that then there ex-
ists a polygon with T' and C as its vertical and
horizontal visibility graphs respectively. A polygon
obtained this way is called an hourglass polygon
and the two trees C and T are said to balance each
other. To obtain a joint realization of an arbitrary
pair of trees C and T, a subtree C’ of C is balanced
with a subtree TV of T to get an hourglass polygon
and the remaining vertices C' — C and T" — T are
gathered in an isolated region by ‘sliding’ them to
the left or right. The process is repeated with the
“leftover” diminishing at each step resulting in a
series of hourglass polygons, horizontally displaced
and connected top to bottom, which jointly real-
ize C and T. We describe the algorithm in a little
more detail below.

Let the bipartition of C be (I1,7,) with {;+
rm=nand) —r =6 > 0, n being the number
of vertices in C. Choose an arbitrary vertex b; of
T as the “base”. Choose an edge e; of T incident
on b; such that the remaining vertices of T may be
arranged on either side of e;, with L; vertices to
the left and R; to the right (note that then L; +
R;+2 = n), such that the quanﬁty | (L1=R1)=61 |
is minimal among all edges e; incident on ; and all
arrangements of vertices. One can now show that
a subtree at ¢; (the other end of ;) containing A,
vertices can be ‘slid’ off to start another hourglass
polygon and the remainder can be balanced with
a part of C into an hourglass polygon. The ‘slide’
is illustrated in Figure 1. The reader is referred to
O’Rourke([1] for the details. It suffices to say that
the procedure does converge (A strictly decreases

each time) and produces the requifed polygon.

4 The Complete Reconstruc-
tion Algorithm

Our algorithm is a variant of the algorithm outlined
above. In the description of our algorithms, we

‘struction algorithm for HCOPs.

317

concentrate only on how a subtree descendent of ¢;
is ‘slid’ on one side, since as it can be observed, the
problem ‘repeats’ itself after this.

Our algorithm is based on the following
observation, which is the crux of O’Rourke’s algo-
rithm: b, ¢ and the subtree descendent g which is
to be ‘slid’ must be such that the remaining sub-
trees at b and ¢ can be arranged in such a way as
to make the number of vertices embedded to the
left (right) of e = (b,t) in the realization, at most
1—1 (r—1). Of course we must be able to do this
in each of the subproblems we generate during the
course of the algorithm. That the above condition
is sufficient for reconstructing a HCOP, is easy to
see. Conversely, given a polygon P, the vertices of
its visibility graph corresponding to its bottommost
edge b*, the farthest visible edge t* of P to b* and,
the edge ¢* which can see t* and some other edge of
P at a higher ordinate than t*, clearly form such a
set of vertices. Note that the horizontal convexity
of P ensures uniqueness of g*, if it exists. So any
HCOP can be reconstructed from its visibility trees

using a scheme which chooses b, t and g as above.

Thus the following is the generic recon-
Note from our
observations above, that any algorithm which re-
constructs a HCOP from a pair of trees can be

rewritten to fit into this framework.

Algorithm Reconstruct
1 Choose a vertex b to correspond to the bot-

tommost horizontal edge of the reconstructed

polygon.

2 Choose a vertex t adjacent to b such that it
would correspond to the vertex visible to but
farthest from b in the reconstructed polygon.

3 Partition the subtrees of T" at b and ¢, so that
the partitions can be arranged on either side of
the edge connecting ¢ and b in such a way that
the number of vertices embedded on the left
and right of the edge are less than (I — 1) and

318

Figure 1: A ‘slide’.

(r—1) respectively. The subtree to be ‘slid’ to
a side is also identified along with this.

4 Balance the caterpillar with T as far as is pos-
sible till a subtree of ¢ is ‘slid’ away to a side.
This starts off a new hourglass, and the above
steps repeat.

End. (of Algorithm Reconstruct)

In our algorithm, we first choose an arbi-
trary edge e of T in place of steps 1 and 2 of the
above generic algorithm. We will eventually make
one of the end-vertices of e correspond to the bot-
tomimost edge b* of P and the other to ¢*. The
following lemma shows that the above assignments
and the partition required in step 3 can be com-
puted eﬁ'iciently for any choice of the edge e.

Lemma 4.1: Let S be a finite set of positive
integers and letl and r be any two positive integers
such thatl+r =3 S,where 3 S refers to the sum
of the integers in S. Then there exist subsets L and
R of S such that} L <1,y R<rand|L|+ |
R|+1=|S| (| A| of a set A denotes the number
of elements in A).

Proof: The following algorithm computes L and
R.

Algorithm Partition
1 Initialize L — ¢, R—Sand § > S —r.

2 If § < 0 then STOP. The current L and R are
the required subsets.

3 Otherwise L — LU {i} if i <6, R — R— {1}

and § = §—¢, where ¢ is some arbitrary element
of R.
Go to Step 2.

End. (of Algorithm Partition) » 0

Clearly every possible partition of S into L
and R can be obtained by the above scheme. More-
over since the partitioning algorithm makes no as-
sumptions about the set S to be partitioned, it is
clear that the reconstruction based on the above
partitioning scheme, can be carried out over all the
phases of the reconstruction. We thus have a com-
plete reconstruction algorithm for HCOPs. In the
next section we use the generic algorithm to derive
a reconstruction algorithfn’ which produces such a
polygon from a pair of wéighted trees.

5 Weighted Reconstruction

Here we give an algorithm which reconstructs a
HCOP from a pair of weighted trees, one of which
is a caterpillar. The algorithm will report a failure
if a joint-weighted-realization does not exist. The
interpretation of the weights we use here is that a

.pair of edges see each other with weight W if the

distance (vertical distance if the two edges are har-
izontal and the horizontal distance if they are ver-
tical) between the two edges is W. In accordance
with the above interpretation, we assume that the
weights assigned to the edges of the trees are pos-
itive reals. We denote the weight of an edge (z,y)

of either tree as W(z, y).

We will now see how each of the steps in
the generic algorithm can be carried out for the
weighted case.

Steps 1 and 2: Choices of b and ¢.

This choice cannot now be arbitrary for a
pair of weighted trees. We will now examine the
choice of b.

We first observe that since b* is the bot-
tommost horizontal edge of the reconstructed poly-
gon b must satisfy the following conditions:

1. b can not be a leaf.

2. Suppose b = vy vs. .. v is a maximal path of
the vertical visibility graph of P such that v; #
t, t* being the edge of P visible to b* and far-
thest from it. Then W(v;_1,v:) > W(vi, vig1),

1<i<k.
3. There must ex-
ist a unique path b = ug,uy,us,...,u; from

b such that W(u;—1,u;) > W(u;, ui+1) when-
ever i is odd and W(u;_q,u;) < W (ui, ui+1)
whenever 1 is even, for i <1 < k (we assume
henceforth that k is as large as possible).

Note that in condition (3) u; =t and the
subtree of T" at ¢, to be slid away, is the one contain-
ing uz. Also if a b satisfying the above conditions
exists then there are exactly two choices for b viz.,
uo and ug. Searching for a vertex of the kind de-
scribed above can be done in time linear in the size
of the graph.

Step 3: Partitioning the subtrees at b and ¢ and
the reconstruction of P. '

We start the reconstruction from b and an
extreme edge of the spine of C' (recall the observa-
tion we made at the end of section 2). We will see
below that the reconstruction proceeds uniquely at
every step once the choice of the edge of C to start

319

with, has been made. Thus we can try a recon-
struction starting from one of the extreme edges,
say e, of the spine of C. If this fails then we try
with the other extreme edge. Also without loss of
generality let the leaf vertex of e. be in the right
partition of the vertices of C.

Suppose P is the polygon realizing T and
C jointly, with b* being the bottommost edge and
t* the farthest visible edge to b*. For any two hor-
izontal edges p* and ¢* of P such that p* is visible
to t* and ¢* to b*, if both the edges are on the
same side of some line segment in the interior of
P joining b* and t* then clearly, W(t,p) + W(b, q)
must be strictly less than W(b,t), where W(z,y)
denotes the vertical distance between the edges z*
and y*. Similarly for two edges p* and ¢*, both of
which are visible to b*, it must be that thres(p) >
W(b,q) or vice-versa, where thres(z) = W(b,z) —
max{W(z,a)la # b and a*is visible to z*}. Now
let thres(p) for a horizontal edge p* which is visible
to t*, be defined as W (b,t)—W(t,p). It is now easy
to verify that the length of the smaller vertical edge
adjacent to b* is simply the minimum of thres(p)
over all horizontal edges Z_).*', other than t* and b*,

which can see either t* or b*.

We now define thres(p) for the vertices of
T which are adjacent to either b or ¢£. The definition
is exactly the same as that in the above paragraph,
with ‘visibility’substituted by ‘adjacency’. To start
the reconstruction, we take b* as the bottommost
edge. The length of b* is clearly the weight of e..
Since the leaf vertex of e. is-on the right, the sub-
tree of T containing p for which thres(p) is min-
imum, will also be embedded on the right. The
edges of C incident on the non-leaf vertex v of e,
can now be easily matched with the vertices of this
subtree to get a partial realization. In _this the only
condition that the weights on the edges of C need
to satisfy is that if two vertices z and y adjacent
to v are made to correspond to counterclockwise
consecutive vertical edges in that order, of the par-

320

tially realized polygon, then W(v,z) < W(v,y)
(W(v,z) < W(v,y)) if the distance from b to z
on T is even (odd), where z* is the horizontal edge
between z* and y*. Of course to make sure that
the visibility between b* and ¢* is not affected, we
keep track of the maximal connected portion of b*
which is currently visible from a point at y = oco.
The weights on the edges of C must be such that
this portion is not obstructed.

To complete the algorithm, we only need
to say how the construction would proceed when
the vertices on the subtrees of T that have been
embedded so far are not enough to match the ver-
tices of C for a realization. The subtree of T to be
‘taken in’ now for carrying out the construction is
the one with the vertex p for which thres(p) is the
smallest among the remaining subtrees. To see why
this must necessarily be so, imagihe that the base
b* has been moved up to the current height (upto
which the partial realization has taken place) with
the edges of the polygon obtained so far deleted.
Imagine removing the corresponding vertices also
from the two trees. It is now as if we start the re-
construction afresh with only the current vertex of
C and b active. Clearly the ‘side’ of (b,t) on which
a new subtree of T needs to be bfought in, is the
one having the leaf-vertex of the extreme edge of
the truncated caterpillar. Thus the subtree to be
taken in, is defined uniquely at every step of the al-
gorithm. We now know how the reconstruction can
be carried out till a subtree at ¢ is to be ‘slid’ to one
side. This can clearly be carried on to eventually
obtain a joint-weighted-realization or report a fail-
ure. Our choices at every step having been unique,
a failure anywhere will imply unrealizability of the
two trees for the particular starting edge C' we used.
We thus have an algorithm to reconstruct a HCOP

from a pair of weighted trees.

6 Concluding Remarks

In this paper we have introduced and discussed
the notion of completeness for reconstruction al-
gorithms on visibility graphs. We believe that al-
gorithms complete in this sense throw a lot more
light on the combinatorial nature of visibility than
do algorithms which are not complete. Though the
example we have chosen for illustration is a rather
simple one, “it seems likely that the concept will
prove to be a powerful one in the study of visibility
graphs, besides possibly providing a framework for
the study of weighted visibility graphs.

References
[1] Joseph O’Rourke. Art Gallery Theorems and

Algorithms.
York, 1987.

Oxford University Press, New

[2] G. Srinivasaraghavan On Some Visibility and
Intersection Problems in Computational Geom-
etry Ph.D. thesis, Department of Computer Sci-
ence and Engineering;-Indian Institute of Tech-
nology, Kanpur, India, 1992.

