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Finding the Largest m-dimensional Circle in
a k-dimensional Box

Ivan Stojmenovit*
Computer Science Department, University of Ottawa, Ottawa, Ontario KIN 9B4, Canada
Abstract

Everett and Whitesides solved the problem of finding the largest (2-dimensional) circle in a 3-dimensional box. In
this paper we give a two-way generalization by proving that the largest m-dimensional circle in k-dimensional box

2. 2 2
aj+ ay+ ..+ ap o

(m < k) of size 2a] x 2a2 x ... x 2ak where 0 < a] < a) < ... < ak has the radius mos , where s

is the minimal number among 0,1,2,..., m-1 for which (m-s-l)aIZ(_s < a% + a% +..+ ai_ o118 satisfied. All possible

positions of the center of the largest circle are given and for m=k-1, m=1 and m=k the largest circles are found to be
unique (for each possible position of the center), up to symmetries.

1. Introduction

Everett and Whitesides [EW, EW1] have shown how to find all the largest 2-dimensional circles inside a
3-dimensional box. In particular, they show that the radius of the largest circle in a box of dimension 2a < 2b < 2¢ is

Y 2 2
equal to Va2+b2 for c2 > a2 + b2, and g__iz_gﬁ__ otherwise. We generalize the solution in both circle and box

dimensions. :

A k-dimensional box B of size 2a] x 2a2 x ... x 2ak is a set of points (X], X2, ..., Xk) in k-dimensional Euclidean
space RK such that -aj < Xj < aj, for each i, 1 <i < k. Without loss of generality we may assume that 0 < a] <ap <
... S ak. The box is bounded by 2k facets which belong to some hyperplanes. The i-th front and i-th back facet belong
to hyperplanes that have equations xj=aj and x;=-aj, respectively, i=1,2,....k. The box is centered at the origin, i.e.
point (0,0....,0). We refer to m-dimensional circle and k-dimensional box simply as circle and box, respectively.

A set of m vectors V1, v, ..., vy in RK is linearly independent if o]vi+02v2+... + 0mvm =0 is possible
only when a1=02=...= am=0, where ay, a2, ..., 0y are real numbers. Clearly m<k. Note that in the sequel vectors
are denoted in bold face letters.

A m-dimensional flat M in RK is a set of points c+Q.1V]1+0:2V2+... + OmVm, Where v1, v2, .., vi is a
linearly independent fixed set of vectors from EK, =(C1,¢2, ..., Ck) is a point from EK and a1, &2, ..., Oy are
variable real numbers. In short, this would be denoted M={c+a1v1+02v2+... + mvm}. A set of vectors vy, v2,
« ¥m is called orthonormal if and only if it satisfies the following properties: lvjl=1, i=1,2,....m, and vjvj=0 for
1<i#j<m. Recall that uw= (u1,u2,...,uk)(W]1,W2,...,.Wk)= U] W1+ UQW2+ ...+ ugWwk is a dot product while lvjl is the
vector norm, defined by lvi12=vivi. Let vi=(vil, vi2, ..., Vik), 1 £i< m. Then Ivi12= vi21 +vi22 + .+ v%k =1.It
follows from standard linear algebra (cf. [SB]) that it is always possible to choose an orthonormal set V15 V25 ey
vm in above representation of M, called orthonormal basis of M, and in the sequel we make such assumption.

The distance between two points u and w in EK is lu-wl. The distance between a point u and a flat M is the
minimal distance between u and a point from M. .

A m-dimensional circle C of radius r and center ¢=(c1,2, ..., ck) in EX is a set of points in a m-dimensional flat
which are at distance no more than r from a fixed point ¢. Therefore if a point (x1,X2,....x) belongs to m-dimensional
circle C of radius r and center ¢ then (xl-cl)2 + (x2-c2)2 +.. 4+ (xk-ck)2 <
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In this paper we determine the radius of the largest circle inside given box by the formula given in the abstract.

Consider few special cases of the formula. For m=1 it gives s=0 and the radius —\/ a%+ a§+ e ai of the largest

1-dimensional circle, i.e. line segment, corresponds to the main diagonal of the box. For m=k we obtain s=k-1 and
radius a] is the minimal box size. The result of [EW, EW1] is the special case of the formula for m=2 and k=3.

The next section contains the proof the the formula for the radius of the largest circle inside given box. The proof
is not a straightforward generalization of [EW, EW1]. Here we give an illustration by an informal interpretation of
lemmas in the next section for the case m=2 and k=3 (which is the case that can be visualized).

Let M be the plane containing the largest circle C, and ¢=(c1, €2, ¢3) be its center. Lemma 1 will state that the
distance from c to the intersection of M with i-th facet is proportional to laj-cjl. Lemma 2 proves that the largest circle
can be translated such that the center moves to the origin. Assuming that a] < a3 < a3, Lemma 3 shows that if C is
tangent to the j-th back and front facets than it is tangent to i-th back and front facets for any i<j. Consequently
Lemma 4 shows that C can be tangent to either only 1-st, or 1-st and 2-nd, or all back and front facets. In Lemma 5

2 2 2
a) +a, +ajy
the radius is proved to be s in case when C is tangent to all facets of the box. Lemma 6 shows

that if C is not tangent to the 3-rd back and front facets than its radius is the same as the radius of the largest 1-
dimensional circle (line segment) in the box 2aj x 2a7, i.e. the diagonal of the rectangle. This solves the problem for
m=2 and k=3. o ' ’

2. Finding the radius of the largest circle

Let Mj(aj) be the intersection of flat M and hyperplane xj=aj, i.e. Mj(aj)= {c+ajvi+agva+... +
omVm}N{xj=aj}. Mj(-a;) is defined similarly. In general case, Mj(aj) and Mj(-a;) are (m-1)-dimensional flats.

laj-cil

Lemma 1. The distance from point ¢ to flat Mj(aj) is

Proof. The distance between ¢ and any point ¢+0.]V]+02V2+... + GmVm from M is levoyvi+apva+... +
OmVm -cl=la1vi+02va+... + amvpyl. Let dij=01v1+02v2+... + 0mvm. Then ldiI2=didi=(a1v1+a2v2+... +

OmVm (01 V1+02Va+... + amvm)=a% + a% + ..+ a?n, which follows easily from the properties of an orthogonal
set of unit vectors. Our objective is to minimize the last function subject to constraint that the point

€+01V1+Q2V2+... + mVm belongs to hyperplane {xj=a;}. Without loss of generality assume i=1 and vm1#0.
Then the first coordinate in point C+O]VI+02V2+... + A Vpp IS a1, i€. C1+ Q] V] 1+ QAQVR 1+ ... + OmVm1 =aj.

Thus am=;’1;-l- @1- c1-a1vi- agvog-... - Om-1Vm-1,1)- Our task now is to minimize the function |d1l2=

f(a1,....0m-1)= a% + ag + ..+ a%ml + —;—(al-cl-alvu-azvm-... -am-lvm-l,l)z. The function is obviously
Vm1 '
continuous and has all partial derivatives. It achieves extreme value when all partial derivatives %fl—i =0 for all
i=1,2,...,m-1. Therefore 20 + 72—(a1-c1-a1v1 1-02V2]-... -0m-1Vm-1,1)(-vj1)=0 or %= —él—(al-cl-alvl 1-
Ym1 ' ¥m1
02V21-... -0m-1Vm-1,1)- The right hand side does not depend on i and thus “'xlll- 3221- I V?nn-lill' From this it

follows that ajrl::l% o for j=2,3?..., m-1. On the other hand am=;-;ﬁ(a1- C1- &1V11- 02V21-... - Om-1Vm-

1L,D= {%11- 0. Substituting this in above equation gives



330

)] 2 _ v21 Vm-11
vi1 ‘mI=alcl-e1vil- Vi1 o1v2]-... - Vil ©1Vm-1,1 Or
aj- .
a1=( ln(; V] . Thus at=(alnf W fort=1,2,....m.
2 2
le v_]l

=1 Fl
‘When obtained values are applied to function Idilz=af + a% + ..+ “?n above, the distance is obtained as Lemma
indicates. ¢

Lemma 2. If m-dimensional circle C with radius r and center ¢ is completely inside a k-dimensional box B
centered at the origin then the translated circle with radius r and center at the origin is also inside B.

Proof. Let ¢'1=(-¢1,0,0, ...,0). Consider translation of circle C with radius r and center ¢ for vector ¢'1. The
circle C will be translated to circle C"y with center ¢"1=(0,c2,c3,...,ck) and radius r. Distances of points ¢ and c"1
from their respective flat Mj(a;) are, according to Lemma 1, the same for i>1. These distances also remain unchanged
with respect to their respective flats Mj(-a;). Therefore if circle ¢ is between i-th front and back facets then circle c" 1is
also between i-th front and back facet for i>1. Consider now the distances to Mj(aj) and Mj(-ay).. According to
Lemma 1, these distances for point ¢ are

laj-c;l l-aj-cil

df= and db=

Similarly, the distances from ¢"1 to its corresponding flats Mj(a1) and M(-a1) are ’ )
l-a;l

lajl

dfl= and dbl= Clearly -aj<cj<aj and thus

2

vji

=

df+db=df1+dbl= 2 . Since dfl=db1 it follows that df+db=2df1. Therefore min(df,db)<df1. In other

words, the translation does not reduce the distance of the center of circle to closer of 1-st back or front facets (here the
distances are measured within the flat that contains the circle). Since circle centered at ¢ is between 1-st front and back
facets, it means that the circle of the same radius centered at c"{ is also between 1-st front and back facets. In
conjuction to similar result obtained for other facets, we conclude that circle centered at ¢ 1 is inside box B.

We now repeat the same analysis, assigning c"1 the role of ¢ and considering the translation for vector ¢'2=(0,-
€2.0.0,...,0). After this second translation circle C moves to position where its center is at the _point
¢"2=(0,0,c3,¢4.....ck). Analogous arguments confirm that the circle remains inside box B. After similar translations
performed for vectors ¢'i=(0,0,...,0,-c;.0.....0) (non-zero element is at i-th position), the center of circle is moved to
the origin and circle remains inside box B. ,

We may therefore consider only the circles centered at the origin in order to find the largest one that is entirely
inside given box. Such assumption is made in the rest of the section. As another consequence of Lemma 1, it follows
that circles centered at the origin either are tangent to both i-th back and front facets or are not tangent to any of them,
for each i=1,2,....k. Here a facet and a circle are tangent to each other if they have exactly one common point. This is
equivalent to the center of circle being at distance r from the intersection of the facet and the flat containing circle,
where r is the radius of the circle.

Let r* be the radius of the largest circle inscribed inside given box. Obviously if a largest circle is not tangent to
the i-th back and front facets then any largest inscribed circle of box B'; of size 2a] x 2a2 X ... x 2aj_1 x 2a'j x 2aj41 X
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... X 2ak also has radius r* for any a'j > aj, including the case a'j=oo. For simplicity, any such box will be denoted as
B'i=2aj x 2a2 x ... X 2aj.] X co X 2aj4 ] X ... X 2ak. It includes the case of infinite size i-th dimension.

The other obvious property is that if the largest inscribed circle of a box of size 2a] x 2a) X ... X 2ak has radius r*
then the largest inscribed circle of the box of size 2b] x 2bp x ... x 2bk also has radius r*, where by, by, ..., bk is any
permutation of aj, ap, ..., ak.

Lemma 3. If a largest inscribed circle C' of radius r* is tangent to the j-th back and front facets of box B but is
not tangent to the i-th back and front facets where j>i and aj2aj then C' is a largest inscribed circle of box B'j and is
not tangent to any of the i-th and j-th back and front facets of B

Proof. If C' is not tangent to the i-th back and front facets then C' is the largest inscribed circle for box B'j.
Therefore any largest inscribed circle inside box B" of size 2a] x 2a2 x ... x 23j.1 x 2a3j X 23j+] X ... X 2aj.1 x 0 X
2aj+1 X ... X 2ak obtained by permuting i-th and J-th size component of B'j also has radius r*. Clearly box B'jis
completely inside box B" since each size component of B'jis < each size component of B". Since on the other hand B
is completely inside B'j it follows that circle C' with radius r* is inside B'j and is a largest inscribed circle of box Bj.e

Lemma 4. There exist t (1<t<k) such that the largest inscribed circle inside box B is tangent to the i-th back and
front facets for i=1,2,...,t and its radius r* is the same as the radius of the largest inscribed circle inside any box of size
2a] X 2a2 X ... X 2a; X 22't41 X ... X 22k where a'ty1>a41, .., a'k>ak are arbitrary size components.

Proof. We may denote the size of later box by 2aj x 2a) X ... X 2ag X o X ... X o, Let t be such that a largest
circle C' is tangent to the i-th back and front facets for i=1,2,....t but C' is not tangent to the (t+1)-th back and front
facets. Then from previous lemma it follows that C' is the largest inscribed circle of any B'j for j>t, and therefore for
box 2a] x 222 X ... X2ag X 00 X ... X o0, ¢

Consider now the case t=k which corresponds to circle being tangent to all facets of box B.

Lemma S. If the largest circle C inside box B is tangent to all facets of B then the radius r* of Cisequal to

k
24
a _
i=1

m

Proof. If C is tangent to all facets of B then all distances from origin, which is the center of the circle, to a facet
of B (within the flat containing circle) are equal to r*, theradius of C.
m

2 2 2 2
LeT‘—Z 2 Accordin Lemma 1, it foll thaﬂ- 2 ik—H T'—Ta—i'f i=2,3,..., k.
t Ti= vji' cording to ma 1, it follows tTl—Tz—...- T ence Tj= 132 or i=2,3,...,
=1 1
k T k 5
Therefore ZTj=_§’z aj.
i=1 ai=1
k
>
k k m m k m a2 .
1 j=1

From Y Ti= ¥ Y Via > Zv%= Y 1=m it follows that r*2=—= .o
: . it R T1- m
i=1 i=1 j=1 =1i=1 =1

The result of the last lemma correspond to the case s=0 of the major result of the paper. It will serve as the basis
of an inductive proof of the formula. The next lemma provides the induction step for the final result.

Lemma 6. The largest (m'-1)-dimensional circle in (k'-1)-dimensional box B' of size 2aj x 2a) x ...x 2ax'.1 and
the largest m'-dimensional circle in k'-dimensional box B of size 2a3 x2a2 X ... X 2ak’.] X o have the same radius.
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Proof. Let C be an (m'"-1)-dimensional circle of radius r in EK-1, centered at the origin. C is a set of points
X'=(x1, X2, ..., Xk'-1) which belong to a (m'-1)-dimensional flat and satisfy the property x% + x% + ..+ xi,_l <r2.

Map each such point X' to the point X=(x1, x2, ..., Xk'-1, Xk') from EK' such that x% + x% + ..+ xi,_l +xi.= r2.

Obviously there are one (for xk'=0) or two (otherwise) points X for a given X'. All points X obtained by rhapping of
all points from C define the border of an m'-dimensional circle C{1) which has the same radius r. The circle C(1) is
uniquely determined by C. We refer to so obtained circle C{1) as the 1-st expanded circle of C. The inverse mapping
can be similarly defined and obviously the correspondence is one-to-one.

Suppose now that C is the largest (m'-1)-dimensional circle with radius r inside (k'-1)-dimensional box B’ of size
2a] x 2a2 x ... x 2ag".1. Then for each point X'=(x1, X2, ..., xk'-1) from C the following property is valid: Ixjl<lajl for
i=1,2,...k"1. Clearly C(1) is between kth back and front facets, since B has arbitrarily large k'-th dimension (ag'=oc).
Therefore Ixjl<lajl for i=1,2,... k' and the 1-st expanded m'-dimensional circle C(1) is inside box B of size 2a1 x 2ap x
... X 2aK'-] x o=. Suppose that there exist a circle C' inside B with radius r'’>r. By a similar argument C' is 1-st
expanded circle of a (m'-1)-dimensional circle that is inside B' and has radius >r. This contradicts the choice of C.
Therefore C(1) is the largest inscribed circle in B. In analogous way one can prove that if C(1) is the largest circle in B
then C is the largest circle (of one less dimension) in B'. 4

Define now C) to be 1-st expanded circle of CU-1), Then the following lemma follows directly from Lemmas 5
and 6 by applying induction.

Lemma 7. Let s be such that the largest inscribed circle inside box B of size 2a1 x 2ap X ... x 2ay is tangent to
the i-th back and front facets for i=1, 2, ..., k-s and is not tangent to the i-th back and front facets for i=k-s+1, k-

2. .2 2
atagt .. +apg

$+2,..., k. Then the radius of the largest inscribed circle inside B is p—

We are now ready to prove the major result of this paper.

Theorem 1. The largest m-dimensional circle in k-dimensional box (m < k) of size 2aj x 2a3 x ... x 2ak where

2 2 2
aj+ay+ ... +aj g

0 <a] £ ap < ... < ak has the radius » where s is the minimal number among 0,1,2,..., m-

m-s
1 for which (m-s-l)a2 < a2 + 2 +..4 a2 is satisfied.
k-s =3 +3 k-s-1

Proof. The radius r of the largest circle C is determined in Lemma 7. Lemma 7 defines s such that C is tangent
to the i-th back and front facets of B for i=1,2,..., k-s and is not tangent for i>k-s. Then from the construction of 1-st
extended circles it follows that aj > r for i>k-s since (0,0,...,0) maps to (0,0,...,0, +r); i.e. box dimension is not
tangent to the largest circle iff the appropriate box size is greater than the radius. From

2 2 2
al+ a2+ o + ak-s

ak-s+1> mos , it follows that (m-s)ai_s +1> a% + a% +..+ aﬁ_s.

. . 2 2 2 2 2 2 2 2
Then for j<s we obtain (m-pak_jﬂ= (m-s)ak_j a1t (s-j)ak_j 1> (m-s)ak_ s+l Poksel F A gyt AL j > aj

+ 2 +..+ a2 .. Therefore s is the minimal number among 0,1,2...., m-1 for which (m-s-l)a2 < a2 + 2 +..+ a2
) K-j ks=31%3 k-s-1

is satisfied. ¢
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3. Finding all largest inscribed circles

It would be of interest to determine all largest inscribed circles in addition to finding their diameter. In this section
we solve the problem in several cases.

For m=1 obviously there are 2k-1 main diagonals, each being a largest line segment.

In case m=k the center e=(c1,c2, ..., k) of circle satisfies ¢1=0 and -aj+aj < ¢j < aj-aj for2<i<k.

In general case, the center ¢=(c1,c2, ..., ck) of circle satisfies cj=0 for i=1,2,...,t and -ajtr<cj<ajrfort<i<
k, where r is the radius of the largest circle and t is determined by Lemma 4. More precisely, any point ¢ satisfying
these properties is center of a largest circle.

While the problem of determining all center position is solved by the last observation, the problem of finding all
largest circles with given center (say, at the origin) remains to be investigated. We partially answer this question. The
following theorem gives an answer for m=k-1. This is a one-way generalization of the results presented in [EW, EW1].

Theorem 2.Let n=(nj,n3,..., nk) be a (uniquely determined) unit normal vector to (k-1)-dimensional flat
containing the largest circle. If the largest (k-1)-dimensional circle inside k-dimensional box is tangent to all facets

ma.
1
then ni2= 1-5—— and there are 2k-1 different largest inscribed circles, all centered at the origin.
a, +...+a
1 k

Proof. Let A be the matrix having vy, v2, ..., vk.1 and n as rows. These vectors form an orthonormal basis
of EX, Therefore AAT=I where I is identity square matrix and AT is the transpose of A. For square matrices A and B,

from AB=I it follows that BA=I (see exercize 3 section 2.7 of [SB]). Therefore ATA=I. From this it follows that v%i +

2
a.

h :
v%i + ..+ vzk_1 i+ n‘i’2 =1 for i=1,2,..., k. Thus S+ “i2 = 1; therefore nj is determined as Theorem 2 states.
, r

There exist another proof of the same result. It is well known that cos B;j = nj where B; is the angle formed by n

and i-th back and front facets. O the other hand, sin B; = ay/r = \ / 1-n =V 1-cos2(By), therefore o2 is determined.

There are two different values for nj which satisfy the same formula. This gives a total of 2K normal vectors.
However, n and -n define the same hyperplane, and the number of different circles is 2K-1. .

If the largest circle is not tangent to all facets in Theorem 2 then similar conclusion can be obtained using Lemma
6 and above observation on the position of the center of circle.

Conclusion

In case of general m and k, the number of restrictions on the orthonormal basis appears to be insufficient to
uniquely (up to symmetries) determine the flat containing the largest inscribed circle. It is not even known whether the
number of solutions is finite. This problem remains to be investigated.
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