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Abstract

Assume that convex polygon A contains convex polygon C. In this paper, we
propose a linear time algorithm for finding a convex polygon B nested between
these two polygons under the condition that the vertices of B must be a subset
of vertices of A and the number of vertices of B is minimized. Our algorithm is
optimal. |
Section 1 Introduction -

In [1], the following problem was discussed: Given two convex polygons A
and C such that C is contained inside of A, determine a convex polygon B
which is nested between A and C and the number of vertices of B is minimum.

In [1], a greedy algorithm was proposed to solve the above problem in
O(nlogn) time, where n is the total number of vertices of A and C. Until now,
as far as the authors are aware of, no linear time algorithm of the above
problem has been found.

In this paper, we further require that the vertices of the solution pblygon B
must be a subset of vertices of A. Under this constraint, we can solve the above
problem in linear time which is optimal. Such a solution polygon B is called a
restricted minimal convex nested polygonal separator of 4 and C.

Now, let us formally state our problem: We are given two convex polygons
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A and C such that C is contained in A. Find a convex polygon B such that B
is nested between A and C under the condition that the vertices of B must be
a subset of vertices of A and the number of vertices of B is minimized. Let the
numbers of vertices of 4 and C be m and k respectively. We use ag,ay,...,0n -1
and cg,cy,...,ck-1 to denote the vertices' of A and C respectively, in a
counterclockwise order. Let n be the sum of m and k. Furthermore, we aséume
that the vertics of A and C are wrapped around at modulo m and k
respectively.

Section 2 The Algorithm

Consider Fig. 1. Our algorithm starts from finding the farthest vertex which
any vertex of A can reach without going through the convex polygon C. For
instance, the farthest vertex of a; is a3 and the farthest vertex of a3 is as.
Formally, the farthest vertex of a vertex of A is defined by first defining the
right tangents of C: For any vertex a; of A, there are two tangents of C with
respect to ¢; [3]. Assume that we stand at a vertex a; and look at the direction
aic;. We say that @c; is a right tangent of C with respect to i if @ic; is a
tangent of C and C lies to the lefi—hand side of @c;. Let a; be a vertex of 4
and @c; be the right tangent of C with respect to a;. We say that ap is a
farthest vertex of a; if 6ic; intersects A at edge Gpapy;.

A chord of a convex polygon X is an edge inside X which connects two
vertices of X. For our case, we also require any chord of A does not intersect
polygon C. Suppose aiaj is a chord of A. We say a; is a starting vertex of aig;
if polygon C is at the left—hand side of aja;. If g; is a starting vertex of aiaj,
aj is an énding vertex of ajaj. Suppose that the farthest vertex of a; is aj, and
we connect a; to aj. Then aigj is a chord of 4, ¢; is a starting vertex of @g;

and ¢; is an ending vertex of ajaj. For example, for the case shown in Fig. 1,
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all of the chords created by connecting vertices of A and their farthest vertices

are shown in Fig. 2.

a4 a‘

a a3 : as as

a, a. a

Fig.1 Fig. 2

Our original problem then becomes the following problem: Given two convex

a:

poiygons "A and C and a set of chords .4,.%,...,.% where each chord is specified
by an ordered pair <z;,y;> where z; and y; demote, respectively, the starting and
~ ending vertex of the chord with y; following z; in the counterclockwise direction.
Our minimal chord covering problem is to find a minimal number of chords

whose union covers polygon A. For instance, for the problem instance of Fig. 2,

{@1a3,0305,8082,a5a0,} is a solution, as shown in Fig. 3(a). The set of the starting

vertices of {aja3,a3a50002,0580,} is {a1,83,80,a5}. Let us order these start vertices
into a circular sequence a¢—a;—az—as—dao, as shown in Fig. 3(b). And connect
the starting vertices of the circular sequence into a cyclic fashion to form a
convex polygon B = ag—ar—aez—as—ao, as shown in Fig. 3(c). Then, in the
nest section, we will prove that B is a restricted minimal convex nested polygon
of A and C. |
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To solve the above minimal chord covering problem, we may use the
algorithm suggested by Lee and Lee [2]. In [2], the problem considered is as
follows: Given a set of m arcs 4 .4,..,.%4 on a circle and each arc .# is
specified by an ordered pair <zjy;>, where z; and y; denote, respectively, the
two endpoints of the arc with y; following z; in the counterclockwise direction.
The circle—cover minimization problem is to find a minimum number of arcs
whose union covers the circle. In [2], they presented an O(mlogm) time algorithm
to solve it. Furthermore, if the endpoints of these arcs ,ie., {xi,x3,...xa} and
{¥1,72,--,yu} have been sorted, then linear time is sufficient.

The 'following is our algorithm for solving the restricted minimal convex
nested polygonal separation problem. |
Algorithm A: Findingl a restricted minimal convex nested polygonal separator of
A and C.

Input: Two convex polygons A and C where C is inside of A and the vertices
of A and C are ao,ay,...,0u-1 and co,cy,...,ck1 Tespectively, in counterclockwise
order.

Output: A restricted minimal convex nested polygonal separator of A and C.
Step 1: For each vertex of A4, find its farthest vertex.

Step 2: Connect each vertex of A to its farthest vertex.

Step -3: Solve the minimal chord covering problem with A and the chords
produced in Step 2 as the input.

Step 4: Order the starting vertices of the chords found by Step 3 in circular
sequence.

Step 5: Connect the starting vertices of the sequence found by Step 4 in a cyclic
fashion to form a convex polygon B.

Step 6: Return convex polygon B.
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In order to prove the correctness of Algorithm A, we need the following

lemma.

Lemma 1: The number of edges of the restricted minimal convex nested
polygonal separator of A and C is equal to the number of a minimal set of
chords covering A.

Proof: Assume that t. and ts are the number of a minimal set of chords

covering A and the number of edges of the restricted minimal convex nested
polygonal separator of A and C respectively. First, we want to prove that tots.
Consider a minimal sét of chords covering A whose size is tc. Order the starting
vertices of these chords into a circular sequence on polygon A and connect these
starting vertices into a cyclic fashion to form a convex polygon. The result is a
restricted convex nested polygon of A and C with t; edges. Since ts is the
number of edges of the restricted minimal convex nested polygon of A and C,
tedts. ’

Now, we prove that tg>t.. Consider a restricted minimal convex nested
polygon of A and C whose size is ts. It is also a chord cover of polygon A
with t5 chords. Since tc is the minimum number of chords covering 4, tsdtc.

Q.E.D.

Since Algorithm A solve the minimal chord covering problem. Lemma 1
implies that the polygon produced by Algorithm A is an optimal one.

Step 1 of Algorithm A is critical. A naive way of finding all farthest vertices
requires O(n?) time [3]. In [4], we can use greedy strategy to solve it in O(n)
time.

Now let us discuss the time complexity of Algorithm A. It needs O(n) time
to perform Step 1 and 2. It needs O(m) time to perform Step 3 by applying the

circle—cover minimization algorithm [2]. Step 4 can be done in O(n) time by a
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linear scanning of vertices in A. Step 5 needs the same time—complexity.

Therefore, we have the following Theorem.

Theorem 2: The restricted minimal convex nested polygonal separator of A and C -

can be found in O(n) time.
Section 3 Conclusions

We have presented a linear—time algorithm for obtaining a restricted minimal
convex nested polygonal separator of two nested polygons. Our algorithm makes
an efficient search in finding the farthest vertices of all vertices of a polygon A
and use the circle—cover minimization algorithm as a subroutine to obtain our
solution j)olygon B. And we think that this approach is useful in 'solving some
other geometric problems.
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