340

Constrained Delaunay Triangulation Revisited

J-M. Moreau
Dept INFA,
E.M.S.E.
158, Cours Fauriel
F Saint-Etienne, 42023 Cedex
E-mail: moreau@emse.fr

Abstract

Paul Chew ([3], and [4]) has given an elegant and optimal
O(nlogn) algorithm to construct a Delaunay triangulation
for the embedding of a planar graph. His method is an ez-
tension of Lee and Schachter’s algorithm ([13]), designed
to work on point sets. Chew’s algorithm makes strong as-
sumptions on the distribution of data, and creates virtual
vertices to enable the “Divide-and-Conquer” paradigm. It
is shown in this paper that such assumptions may be aban-
donned, and that the resulting optimal algorithm is much
closer to a practical tmplementation.

1 Introduction

Large-scale applications make extensive use of Delaunay
triangulations for representing complex data. One exam-
ple of such applications is a solver for fluid mechanics, for
which the results are optimal when computations are per-
formed on a Delaunay mesh. Another example is a flight
simulator where optimum performance is achieved when
terrains are represented by means of Delaunay triangula-
tions. In both cases, there is a strong need for representing
the complexity of the data by means of a planar graph G in
which the vertices are original data points, and segments
are constraints: Typically, segment chains will represent
mountain ridges, river banks, or contour lines.

The resulting Delaunay triangulation is then said to be
constrained by the graph in the sense that it contains two
types of edges:

1. prescribed G-edges, which are exactly the edges of
the constraint graph, and

2. Delaunay (unprescribed) edges, which are the edges
needed to complete the triangulation, and may at
most have an endpoint in common with any G-edge.

Several optimal solutions have been published for con-
structing the constrained Delaunay triangulation of a pla-
nar graph, and are referenced below. Our paper suggests to
withdraw the very limiting conditions imposed on one such
published solution ([3]), thus transforming it into a new,

*Was working at EMSE when this work ﬁas done.

P. Volino*
Centre Universitaire d’Informatique
Université de Genéve
24, rue du Général Dufour
CH 1211 Genéve
E-mail: pascal@cui.unige.ch

independent and practical algorithm, even more akin than
it already was to the original divide-and-conquer method
for constructing Delaunay triangulations of point sets it
was derived from ([13]). We also claim that this enhanced
version may be generalized to situations when only a lo-
calized triangulation is required among a global hierarchy
of polygons. However, this aspect of the problem will later
be presented in a companion paper.

Section 2 gives definitions, notations and a brief histori-
cal introduction. Section 3 describes the original algorithm
our work stems from. Section 4 presents the revisited ver-
sion of the algorithm. Section 5 concludes on further re-
search.

2 Historical background

Delaunay triangulation is a well-known subject with a vast
literature. Refer to [1] for a complete list of references on
this structure and its dual — the Voronoi diagram — and to
[14] for detailed presentations. The chronology below does
not claim to be exhaustive; it is merely intended to place
the present work in the context of all previous research.

Let Vi = {v1;v2,...,vn} be a set of n distinct points
— hereafter referred to as sites — in the Euclidian plane E.
The Voronoi diagram of V,, (noted V D(V},)) is the planar
subdivision of E in which each site v; € V; is assigned
one unique convex region containing all points closer to v;
than to any other site. If no three sites are aligned, and no
more than three sites are on the same circle, the sites are
said to be in general position, and the straight-line dual
of the Voronoi diagram is a unique maximal planar graph
DT(V,.), called the Delaunay triangulation of the set.

Let v;,v;, vr be three sites determining one Delaunay
triangle A;jx in DT(V,). The circle (T'jk), circumscribed
to Aijk, is such that it contains no site in its (relative)
interior. This property will be referred to as the circle
criterion in the sequel.

The Voronoi diagram and Delaunay triangulation of
Vn may both be constructed in ©(nlogn) time and ©(n)
space ([14]). The first optimal algorithm for constructing
the Voronoi diagram of a set of points was suggested by
Shamos and Hoey ([16]), who observed that the divide-



and-conquer paradigm ideally applied to proximity prob-
lems. [10] then generalized this technique to the merging
of any two Voronoi diagrams on points, and even line seg-
ments. The first optimal construction of the Delaunay
triangulation of a planar point set was given in [13]. ([9]
later gave a similar, ‘divide-and-conquer’ solution, with
treatment of co-circularity. See [6] for a discussion.)

S. Fortune published an optimal sweep-line algorithm
for constructing the Voronoi diagram of a set of points
([7], [8]), which may be applied to line segments, but is
then more involved. Finally, researchers from INRIA ([2],
[5]) have suggested powerful randomized techniques for dy-
namic insertions and deletions in the Delaunay triangula-
tion of a set of points, in log(n) expected-time per opera-
tion.

The pioneering work on the extension of divide and con-
quer techniques to Voronoi diagrams of segments (in var-
ious metrics) is [11]. Lee’s work triggered all subsequent
research on the so-called “constrained” case, which we shall
now define more precisely.

Let E be a set of segments in the plane, with endpoints
in Vp, and ¢ = (Vi, E) be the embedding in E of a planar
straight-line graph, with vertices in V,, and edges in E.
Let v; be a site in V,. We shall say that site v; # v; is
vigible from v; (with respect to FE) if and only if the line
segment [v;, v;] intersects no segment in E, except possibly
in a common endpoint.

The constrained Delaunay triangulation of G is a max-
imal planar straight-line graph CDT(G) = (Vy, E’) where
E C E', and such that the circle circumscribed to any tri-
angular face Ay,v;v, contains in its interior no site that
would be visible from v;, v; and vx at the same time.

Clearly, constrained Delaunay triangles are Delaunay
triangles when £ = @. Also note that the dual of the
constrained Delaunay triangulation of a planar graph is

not well-defined (see [4], [15] and [1] for counterexamples).
A planar graph with n vertices has at most 3n—6 edges
([14]), so its size is O(n). It may be shown that the lower
bound for constructing both structures on a graph of size
nis Q(nlog n) ([1]). The first breakthrough in the study of
constrained Delaunay triangulation of a planar graph was
made by Lee and Lin, in [12]. However, their algorithm is
only optimal when applied to a simple plane polygon (with
empty interior). ’

Two independent and different O(n log n) constructions
of the constrained Delaunay triangulation were published
at the Third ACM Symposium on Computational Geom-
etry (1987). Wang and Schubert ([17]) give a non-trivial
method to construct the so-called “bounded” Voronoi dia-
gram of a set of line segments, and they also mention how
their solution may be used to build the pseudo-dual, but
give no solution for a direct construction. [3] gives an algo-
rithm for directly constructing the constrained Delaunay
triangulation of a graph, but no hint on the direct con-
struction of the pseudo-dual. Seidel ([15]) will settle the
whole matter by showing how constrained and bounded
Voronoi diagrams (and their duals) are related, and how

341

these structures may be constructed using a variant of For-
tune’s sweep-line algorithm.

Chew’s algorithm is one of the simplest solutions, but
the strong assumptions it imposes greatly impair imple-
mentation. However, the adaptation of the divide-and-
conquer paradigm to such a complex problem has great
theoretical and practical implications.

3 Paul Chew’s algorithm

If necessary, the graph G to be triangulated will be aug-
mented with two virtual infinite horizontal lines, bounding
it above and below; suppose further that it is possible to
subdivide the plane into n vertical strips, in such a way
that every vertex in the graph belongs to exactly one strip;
and finally that a pre-processing phase has allowed to de-
termine, for each vertex, which (possibly virtual) edge of
G is immediately below, and which is immediately above
it. Thus, elementary strips contain exactly one such ac-
tive “piece” (between two G-edges). While each G-edge is
active in at least one strip, many edges may cross a given
strip without begin active in it. This is a good way to only
consider the two edges closest to one given vertex. Let us
also ask that the pre-processing phase effectively clips each
active portion of G-edge to the vertical boundaries of the
strip it is active in. This creates O(n) virtual vertices.

Supposing V» non empty and sorted by increasing z-
coordinates, Chew’s algorithm may be summarized as fol-
lows: .
Chew(Vi..,: VertexArray): Strip; {

if (r = 1 < 2) return Trivial¢DT(Vi..r);
return l{erge(chew(Vl“Lx_.;_rJ ) Chew(V‘-z_:F-lnr));

}

Comments: When subsets with at most 3 vertices are to
be treated, the specialized TrivialCDT function is called,
the details of which will be omitted.

Sets with at least four vertices are divided into two
equally sized subsets, such that all elements in the first sub-
set have strictly smaller abscissa than those in the other.
This is ensured by the fact that the initial vertices may
be placed in n different vertical strips — which proscribes
vertically aligned vertices — and have initially been sorted
by z-coordinates.

The algorithm recursively builds the constrained Delau-
nay triangulations of the two subsets, and merges the two
sub-triangulations into one.

Of course, the only difficult part is the implementation
of the merge process. In the original algorithm, this task
is divided into two subtasks: Stitching two active pieces,
and then merging their contents. Initially, each active
“piece” conmsist of one graph vertex and its two immedi-
ate neighbouring edges. Merging two initial active pieces
yields a composite active piece, whose contents is a sub-
triangulation, and so forth...



342

Figure 1: Basic merging techniques.

3.1 Stitching two pieces

Stitching pieces consists in scanning them in the direction
of increasing y’s, and doing the following operations:

1. Remove all virtual vertices on the common boundary
of the two pieces, and all attached Delaunay edges.

2. If an active G-edge in the left piece is not present in
the right one, extend it up to the new virtual vertex
at the intersection with the right boundary. Proceed
to the next element in both pieces. (A similar action
is to be performed for the symmetrical situation.)

Else if a G-edge in the left piece exactly matches a
G-edge in the right piece, unify them in a single one.

In view of this operation, the pre-processing phase should
also arrange all the pieces in one strip as an ordered linked
list, provided no two vertices lie on the same vertical line.

3.2 Merging two sub-triangulations

As soon as two pieces have been stitched together, their
contents are merged into one sub-triangulation, using a
variant of the technique in [13], which we both shall now
review. Refer to Figure 1 for help.

Lee and Schachter’s merge

Find the two supporting lines for the convex hulls of the
two sub-triangulations, asin the merging phase of two lin-
early separated convex hulls (cf. [14] for a detailed ac-
count). Start from the lower one, which connects, say

vertices P, and Pr on the hulls. Following P; on the left’

hull in counter-clockwise order is vertex P/, and following
[Pi, P] in counter-clockwise order around P is [Pi, P’].
P/ and P}’ may be defined symmetrically in the right sub-
triangulation. While the circle through Py, P/, P! contains
P, in its interior, remove edge [P, P|] from the left sub-
triangulation, replace P/ with P/’ and P/’ with its own
counter-clockwise successor around P;. Continue until the
circle criterion is no longer violated, or P}’ falls into the
lower half-plane defined by line P;P,. Now, do the same
for vertices around P,.. When this is finished, use the cir-
cle criterion in the quadrilateral (P, Py, P/, P) to either

'

replace P, with P/ or P, with P}, accordingly. The pro-
cess may now be started over again, until [P, Pr] coincides
with the upper supporting line of the two hulls.

Chew’s merge

In the case of a graph, things are slightly different. Ev-
ery active piece is surrounded by two G-edges, themselves
bounded by virtual vertices which have been precisely lo-
cated, but have no relationship with the final triangulation.
These vertices are now going to behave like infinite vertices
in the triangulation process. As such, they will have little
influence on the circle criterion: the limiting circle through
three points, one or two of which are vitual vertices, is an
infinite line, and asking whether one vertex is inside this
“circle” boils down to finding out whether it is above or
below the line.

~ There will be four types of virtual vertices:
(=00, —00), (=00, +00), (+00, —~0), and (+00,+00). If a
virtual vertex is situated on the left (right) boundary of a
strip, its abscissa will be —oo(+00). If a virtual vertex lies
on a bottom (top) bounding G-edge for the current piece,
its ordinate will be —oo(+400).

Finally (refer to Figure 1), if a G-edge originating from
one piece is directed towards the other piece but does not
terminate (at a vertex) in it, it will hide some section of
the latter to vertices in its own, and this will be another
cause for interrupting the merging’s elimination phase.

3.3 Analysis .

The object returned by the algorithm is a strip, as defined
earlier, containing one unique triangulation (regardless of
the distribution of vertices). This strip is given as a list
of edges from which it is possible to extract the sought
triangular faces in linear time.

The asymptotic performance of Chew’s algorithm for a

graph of size n is easy to determine:

1. Pre-processing phase: A sort and a simple sweep-line
algorithm may do the job, which yields an O(nlog n)
running time.

2. The dividing phase is a constant time process.

3. The stitch-and-merge phase takes time proportional
to the number of elements in both strips, which is
O(n).

4. The overall equation is T(n) = 2T(n/2) + O(n),
which yields an O(nlog n) running time.

4 A less restrictive version

We have already stated the qualities of Chew’s algorithm.
Let us now mention its major drawbacks:

1. It forbids vertically aligned vertices. Chew suggests
to rotate the data to avoid this problem, but such
an operation is very hazardous when precision is a
crucial issue, to say the least.



2. It keeps creating and then destroying virtual vertices,
which have nothing to do with the final triangulation.
The presence of such vertices is not only detrimental
from the point of view of efficiency (memory man-
agement, and computational cost for updations), but
also from that of precision again.

3. It may not be used directly to triangulate a simple
polygon (one must destroy the faces of the polygon’s

~ complement in the convex hull). We shall not go into
this problem in this paper, although the new version
we are about to detail may be made to allow this
operation.

The main objective of the improved algorithm is to accept
all kinds of inputs. This will, in turn, allow to lift off the
obligation to divide the plane into n strips, and rid the
algorithm of virtual vertices.

Let us redefine an elementary strip as an entity contain-
ing either one isolated vertex, or else all vertices with the
same abscissa, linked in increasing y-order. If two succes-
sive vertices on the same vertical line are mutually visible,
there is no harm in connecting them by a Delaunay edge
(which may possibly be later questioned, and then deleted
in the merge process, as seen above).

This simple observation hardly modifies the original al-
gorithm, but its consequences will be considerable:

Chew+(Vi..r: VertexArray): Strip; {
if (r = 1) return TrivialCDT+(Vi..;);
return Merge+(Chew+(V] L4z ), Chew-p(vrts_,] %)5

}

When the subset of vertices has at least two elements,
Chew+ is recursively called on equal sized subsets, and the
resulting strips are then merged. Of course the new merg-
ing procedure is somewhat more involved than it was, as
we shall shortly see. .

On the other hand, if the subset V,, only has one ele-
ment, a specialized function is called, whose operation will
now be detailed.

4.1 TrivialCDT revisited

Recall that this specialized function is called for every ver-
tex in the graph, and that the vertices of the graph have
been once and for all sorted in lexicographical order. Let
v be the current vertex. Basically, all we need is a process
- to be resumed at each call - indicating which G-edges
come nearest to v above and below.

The simplest idea is to use an AVL tree that will con-
tain all “active” vertices and G-edges at v’s abscissa. Us-
ing y-order at the logarithmic-time primitives on AVD’s to
perform the following complex operations, each time the
function is called:

1. Insert v in the AVL.

2. Delete from the AVL all G-edges whose right endpoint
coincide with v, or insert all the G-edges whose left
endpoint coincide with v.

343

3. Detect the G-edges immediately above and below v.

Now, recall that a divide-and-conquer process may be
modelled by a recursion tree traversed in symmetric or-
der. Since the leaves of this recursion tree represent the
vertices of the graph, the recursion process will reach ver-
tices in lexicographical order. Thus, if two vertices have
the same abscissa, when the one with larger ordinate is
reached, it will be possible to check whether the former is
visible from the latter (i.e. no G-edge lies between them),
and to connect them accordingly, as announced.

4.2 Merging revisited

The merging process is somewhat different now, al-
though still linear in the number of vertices in the subsets.

4.2.1 Subgraphs and pieces

Actually, all virtual elements (horizontal bounding lines,
vertical boundaries, vertical strips, virtual vertices) are no
longer necessary. To understand why, let us investigate
the nature of the pieces the algorithm will generate. A
piece will generally consist of a sub-graph (not necessarily
a sub-triangulation) contained between one “floor” and a
“ceiling” (both possibly nil or a G-edge). To be more pre-
cise, such sub-graphs will consist of a bounded and trian-
gulated convex hull, from which “infinite” rays will emerge.
Of course, these rays are not infinite: there are merely G-
edges with only one known endpoint, the second being at
some other location, not yet connectedto the current piece.
(Note that the same thing happened previously, but was
masked by the constant updation of the virtual vertices as
strips were stitched.) Such pieces will be said to be real
pieces, as opposed to virtual pieces which will only consist
of one G-edge.

We shall say that a G-edge completely immerged in a
subgraph is totally captive, a G-edge emerging from a real
piece is half-captive, and that the G-edge in a virtual piece
is totally free.

4.2.2 Stitching virtual and real pieces

The stitching operation should now be easier to under-
stand. The series of pieces returned by the algorithm is a
strip, i.e. a linked list, alternating with virtual and real
pieces. Stitching two such strips is made by scanning them
from the bottommost element and trying to match their
corresponding G-edges. Several cases may occur:

Virtual vs virtual: The scanning process encounters two
virtual pieces. Proceed as follows.

1. If the pieces are the same G-edge, unify them into a
single one and append it as a virtual piece in the new
strip being constructed. Then move on to the next
piece in both strips.

2. If the virtual piece to the left is below the other (re-
member that the graph is planar, and hence if the
G-edges are different, they may not intersect “in the



344

Figure 2: Stitching two pieces.

middle of” two strips), append the left virtual piece
to the new strip, and move on to the next piece in
the left strip.

3. Else, append the right virtual piece to the new strip
and proceed to the next piece in the right strip.

Virtual vs real: Suppose the virtual piece is the left-
hand side one. Scan the boundary vertices of the real piece
clockwise to try and find a half-captive edge that matches
the virtual piece If such an edge is found, unify it with
the virtual piece, which now becomes part of the real plece
Move on to the next piece in the left strip.

Else, move up on the right piece until the scan reaches

a portion of the real piece beyond visibility for the known
extremity of the virtual piece. The virtual piece is neces-
sarily above the real piece, so add the latter at the end of
the new strip, and move on to the next piece of the right
strip.
Real vs real: Both pieces are to be scanned in parallel,
and in (counter-) clockwise order for the (left) right piece.
When reaching a vertex, its oriented incident edge list (as
built by TrivialCDT+ using the AVL) gives the successive
outward pointed G-edges originating from it. If a match
between two half-captive edges is found, simply unify them
and resume both scans on the other side of this common
bridge. As before, the scan may be stopped as soon as
visibility is no more possible from either end.

The scanning of any piece is only completed when visi-
bility is lost, or the upper supporting is reached. Also note
that more than one G-edge may emerge from a single ver-
tex in either piece, which means that the scanning process
may be synchronized using the slopes of such edges. Some
examples of stitching are given in Figure 2. The operations
involved in the stitching procedure are either pointer com-
parisons, differences of vertical intercepts between initial
edges of the graph, or straightforward visibility tests.

4.2.3

Since all virtual vertices have been removed, Lee and
Schachter’s merging technique must be adapted. Great
care must be taken as to which element should be elected
for starting the scan phase around a piece. Some conven-
tions may be taken to always priviledge the lowest outward

Merging

—— s o o —

Figure 3: Stitching and merging two real pieces.

pointed G-edge, or if there is none, the lowest vertex on the
hull, as usual. Here is a sketch of the merge phase proce-
dure:
Search for lower supporting line: The information
gathered during the stitching operation helps determine
all cases. The only troublesome case is “Real vs real”.
Obviously, a supporting line is only valid if and only if
its endpoints are mutually visible. This is ensured both
by the synchronization of the stitching scan and by the
usual scan of the convex hulls merging algorithm. In other
words, the stitching operation ensures that only mutually
visible sections of hulls are undergoing triangulation.
Partial triangulation: Fill the space between visible sec-
tions of both real pieces, using Lee and Schachter’s algo-
rithm, until either reaching the upper supporting line or a
G-edge attached to both-pieces. In the latter case, proceed
to the other side of this bridge, and repeat this item. If
the partial triangulation is over, resume stitching.

Let us take the following example to illustrate how the
stitching and triangulation processes must co-operate. Re-
fer to Figure 3.

The left (right) piece begins in L (R). Scanning the
left piece first (for instance), the half-captive G-edge G is
encountered, so the scanning process now begins on the
right piece, up to T, where M is no longer visible. Thus,
no matching G-edge was found on the right piece. There
is no hope of completing the triangulation below G, so the
action now takes place aboveit. M and R are mutually
visible and no G-edge was found up to S. Thus, the sup-
porting edge between both sections is found to be MU,
and Lee & Schachter’s algorithm is used to triangulate the
space between both pieces up to NT since, at this stage,
the concurrent stitching and merging processes infer from
reaching the upper supporting line that the merglng of the
two pieces is over.

4.2.4 Analysis

TrivialCDT+is called n times, and performs as many AVL
insertions/deletions/look-up as the number of elements in
the graph. Hence, its contribution to the running time is
O(nlogn).

It is important to note that the technique we have



outlined globally creates non convex sub-graphs, with lo-
cally convex sections of boundary between two spikes (half-
attached G-edges). This is how it is possible to combine
Lee and Schachter’s original merging technique on the one
hand, and Chew’s adapted technique on the other. The
trick is to carefully synchronize two scanning processes:
the stitching operation between matching spikes, and the
triangulation of mutually visible convex sections of trian-
gulated sub-graphs.

The operations involved in the stitching-merging phase
are conducted by means of a vertical scan from top to
bottom. Of course, it may happen that an entire piece
has to be scanned entirely for stitching purposes, and then
again for the sake of its partial triangulation. But this is
exactly what happens, in the worst case, when one tries
to locate the supporting lines for two linearly separable
convex hulls! ‘

Some extra but straightforward visibility tests are re-
quired to ensure consistent supporting lines, but on the
whole, the entire process requires a number of constant-
time operations proportional to the size the strips to be
merged. Therefore, the new version of Chew’s algorithm
has the same O(nlog n) asymptotic running time.

5 Conclusion

We have shown how Chew’s algorithm may be improved
to accept all data configurations. This, in fact, allows to
rid the original algorithm of all the virtual elements that
impaired its implementation. The new algorithm may even
be observed to be more closely related to [13] than [3] was.

However, the authors wish to acknowledge that both
results are equally important to their eyes, and that their
work was aimed at finding a way to implement Chew’s
algorithm in an efficient and robust way, without having
to alter the true topology of data.

The algorithm presented in this paper has been imple-
mented and run, and is currently being integrated into the
two types of large-scale applications mentioned in the In-
troduction.

The contribution of the AVL structure is by no means
limited to what has been said here: it is in fact possible
to use it for generalizing the algorithm to the situation
where one wishes to triangulate the interior of a complex
polygon, i.e. a non self-intersecting polygon containing
a whole sub-graph. This will be the subject of another
publication.

Finally, our future goal is to adapt Chew’s revisited
algorithm to the Delaunay triangulation of a graph con-
strained to a surface.

345

References

[1] F. Aurenhammer. Voronoi diagrams — A survey of
a fandamental geometric data structure. ACM Com-
puting Surveys, 23(3), September 1991.

[2] J-D. Boissonnat and M. Teillaud. A hierarchical rep-
resentation of objects: The Delaunay tree. In Pro-
ceedings of the 2nd ACM Symposium on C’ompututa-
tional Geometry, 1986.

[3] P. Chew. Constrained Delaunay tnangula.tlons. In
Proceedings of the 3rd ACM Symposium on Compu-
tational Geometry, pages 215-222, 1987.

[4] P. Chew. Constrained Delaunay triangulations. Al-
gorithmica, 4:97-108, 1989.

[5] O. Devillers, S. Meiser, and M. Teillaud. Fully dy-
namic Delaunay triangulation in logarithmic time per
operation. Technical Report 1349, INRIA, 1991.

[6] M. Elbaz and J-Cl. Spehner. Construction of Voronoi
diagrams in the plane by using maps. Theoretical
Computer Science, 77:331-343, 1990.

[7] S. Fortune. A sweep-line algorithm for Voronoi dia-
grams. In Proceedings of the 2nd ACM Symposium
on Computational Geometry, 1986.

[8] S. Fortune. A sweep-line algorithm for Voronoi dia-
grams. Algorithmica, 2:153-174, 1987.

[9] L.J. Guibas and J. Stolfi. Primitives for the manip-
ulation of general subdivisions and the computation
of Voronoi diagrams. ACM Transactions on Graphic,
4:74-123, 1985.

[10] D.G. Kirkpatrick. “Efficient computation of contin-
uous skeletons. In Proceedings of the 20th Annual
IEEE Symposium on FOCS, pages 18-27, 1988.

[11] D.T. Lee. Prozimity and reachability in the plane.
PhD thesis, Coordinated Science Lab., Univ. Illinois,
Urbana, IIl.,, 1978.

[12] D.T. Lee and AK. Lin. Generalized Delaunay trian-
gulation for planar graphs. Discrete Comput. Geom.,
1:201-217, 1986.

[13] D.T. Lee and B.J. Schachter. Two algorithms for
constructing a Delaunay triangulation. International
Journal of Computing Information Sciences, 9:219-
242, 1980.

[14] F.P. Preparata and M.I. Shamos. Computational
Geometry — An Introduction. Springer-Verlag, New
York, N.Y., 1985.

[15] R. Seidel. Constrained Delaunay triangulation and
Voronoi diagram with obstacles. - Technical Report
260, IIG-TU Graz, Austria, 1988.

[16] M.I. Shamos and D. Hoey. Closest-point problems.
In Proceedings of the 16th Annual IEEE Symposium
on FOCS, pages 151-162, 1975.

[17] C.A. Wang and L. Schubert. An optimal algorithm
for constructing the Delaunay triangulation of a set of
line segments. In Proceedings of the 3rd ACM Sym-
posium on Computational Geometry, pages 223-232,
1987.



