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Systematic local flip rules are generalized Delaunay rules
(Extended Abstract)

Timothy Lambert*

Abstract

A locally optimized triangulation (LOT) of a set of
sites can be defined by a flip rule that determines
which diagonal of a convex quadrilateral should be
included in the triangulation. A flip rule is system-
atic if there is'a unique LOT. It is local if the only
new edges addéd when inserting a new site in the
triangulation are adjacent to the new site. I prove
that the only systematic local flip rules correspond
to generalizations of convex distance function De-
launay triangulations which I call empty shape tri-
angulations.

1 Introduction

Definition. In a triangulation, if two adjacent tri-
angles, ABC and AC D, form a convex quadrilateral
ABCD it is possible to perform a flip and replace
the diagonal AC with BD to get the triangles ABD
and BCD. '

Definition. A flip rule is a function Q(ABCD) —
{AC, BD, either} where ABCD is a quadrilateral,
which tells us whether the triangulation of ABCD
should include the diagonal AC or the diagonal BD.
either(Q) is the set of quadrilaterals (regarded as
points in R®) that flip rule Q returns either for,
and similarly for AC(Q) and BD(Q). We require
AC(Q) and BD(Q) to be open sets and either(Q)
the boundary between them.

Definition. A locally optimized triangulation
(LOT) with respect to a flip rule Q is one where
the flip rule would not change any diagonal of any
convex quadrilateral formed by a pair of adjacent
triangles.

Definition. A flip rule is systematic if there is a
unique LOT, no matter what the site set is.

Definition. A flip rule is local when the only edges
added to a LOT when a site is added to the triangu-
lation and flips performed to construct a new LOT
are those adjacent to the new site.
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If a triangulation is locally Delaunay then it is
globally Delaunay [18], so the flip rule that se-
lects the Delaunay triangulation of the quadrilateral
(DT) is systematic and local.

In this paper I prove that DT is the only flip rule
invariant under translation and rotation of the sites
which is systematic and local.

Definition. Given a collection of shapes such that
every triangle has a unique circumscribing! shape,
an empty shape triangulation of a set of a sites is a
set of triangles such that the circumscribing shape
contains no site in its interior. ‘

If the shapes are the set of homothets of a con-
vex set, then the empty shape triangulation is the
convex distance function (cdf) Delaunay triangu-
lation [5]. I prove that a homothetic ? systematic
local flip rule is an empty shape triangulation where
the shapes are homothets of a set of convex sets.

1.1 Background

Triangulating site sets is a very important problem
in computational geometry; there are far too many
applications in computational geometry and other
fields to mention here. (See the surveys [3, 6, 1])

There are many different possible triangulations
of a set of sites. Which one is optimal will depend
on the application. For example:

o If the triangulation is to be used as finite el-
ement mesh we wish to avoid ill-conditioned
equations. This means that we do not want
triangles with angles close to 180° [2].

.o If we are using the triangulation to linearly
interpolate functions with a bounded second
derivative, then the error is minimized by min-
imizing the maximum circumradius of any tri-
angle [17]. -

o If the triangulation represents a three-
dimensional surface which is to be rendered on

1 circumscribing means that the triangle vertices lie on the

boundary of the shape
20one that is invariant under scalings and translations



a raster display, then .we want to avoid trian-
gles less than one pixel wide as these can cause
undesirable artifacts [7].

Many other alternative definitions of optimality
have been proposed. See [3, 13] for surveys.

Lawson [14] introduced the idea of using flips to
maximize the minimum angle to improve a triangu-
lation. By elementary geometry we can prove that
this is the same flip rule as DT". Because DT is sys-
tematic the very simple flip algorithm (repeatedly
apply the flip rule) will converge to the Delaunay
triangulation, so the Delaunay triangulation maxi-
mizes the minimum angle over all triangulations—it
is a globally optimized triangulation (GOT).

Because DT is local, the incremental algo-
rithm [15, 11] will make at most O(n) changes to
the triangulation when adding a new site, giving a
worst case of O(n?) time to compute the Delaunay
triangulation. Guibas, Knuth and Sharir [10] show
that the average® number of sites adjacent to a new
site is O(1), so the incremental algorithm will make
an average of O(n) changes to the triangulation.

The divide-and-conquer algorithm [15] for the
Delaunay triangulation also depends on the local
property, since it guarantees that the new edges
added when merging two triangulations separated
by a line are just those that cross the line and are
ordered by their intersection with that line.

Nielson and Franke [16] claim the flip rule “choose
the triangulation that minimizes the maximum an-
gle in both triangles” is systematic. It is possible
to find a simple counterexample to their claim, but
this leads to the question: Which flip rules are sys-
tematic and local?

2 Main results

Definition. The lines making up the sides of a
triangle ABC' divide the plane into seven regions
(see figure 1). We will denote by ABC the region
that is adjacent to the points A and B, but not C.
The regions are open sets, their union is the plane
except for the lines AB, BC, and AC.

Definition. Q*(ABC) is the set of points in the
plane for which the flip rule Q would not choose
the triangle ABC. That is, if D € ABC then
D € Q*(ABC) iff Q(ABCD) = BD. We can
similarly define Q*(ABC) in the regions ABC and
ABC. In the remaining regions, the quadrilat-
eral is not convex, so the flip rule must choose
the interior diagonal. This means that ABC is in-
cluded in Q*(ABC) and ABC, ABC, ABC are

3taken over all insertion orders
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Figure 1: Regions around a triangle

excluded. Q°(ABC) is the boundary of Q*(4BC),
and Q7 (ABC) = R? — (Q*(ABC) + Q°(ABC))

Definition. Let Q° be the set of curves Q°(ABC)
for all possible triangles ABC.

Definition. We say that Q is circumscribing if,
given any triangle, there is exactly one curve in Q°
circumscribing that triangle.

Definition. The flip graph of a set of sites: The
nodes consist of all possible triangulations of that
set. Two nodes are connected by an edge if one can
be transformed into the other by a single flip. A
flip rule gives a direction to each edge.

ATB ATB
Figure 2: Possible directed flip graphs

There are only four possible different directed flip
graphs for a set of sites that forms a convex pen-
tagon (see figure 2).

e Type IV: No sink. No LOT exists. The flip
rule is not systematic.

e Type III: Two sinks. LOT is not unique. The
flip rule is not systematic.
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e Type II: One sink. The flip rule is not
local: ~ The (unique) LOT of ACDE is
ACE,CDE since EC is preferred to DA but
ADE,ABD,BD is the LOT of ABCDE. The
edge AD is a new edge in this triangulation
although it is not adjacent to B.

e Type I: One sink. A systematic local flip rule
will always have this form.

2.1 Systematic local rules are circumscrib-
ing

Lemma 1. If Q is a systematic local rule and C €
Q°(ABE) N ABE then Qt(ABE) = Q*(ACE) in
the region ACE — ABC (the shaded region in fig-
ure 3).

PrROOF. If Q*(ABE) # Q*(ACE) then there is a
point D € Q*(ABE) \ Q*(ACE) or a point D €
Q*(ACE) \ Q*(ABE) (see figure 3). Note that
ABCDE is strictly convex. Let’s consider the first

Figure 3: Q°(ABE) and Q°(ACE)

case. Either D € Q= (ACE) or D € Q°(ACE). If
D € Q°(ACE) then because Q* (ABE) is open and
Q°(ACE) is the boundary of Q~ (ACE) we can find
anew D' € Q*(ABE)N Q™ (ACE).

e ABCD'E is strictly convex

e QUABD'E) = AD'

e QUACD'E)=CE

¢ Q(ABCE) = either

Now, because AD'(Q) and CE(Q) are open
sets we find a ball around ABCE such that for
all A’B’C'E’ in that ball Q(A'B'D'E’) = A'D/,
Q(A'C'D'E’) = C'E' and A'B'C'D'E’ is con-
vex. And since ABCE is on the boundary between

AC(Q) and BE(Q) we can find A’B’C'E’ in that
ball such that:

e A'B'C'D'F’ is strictly convex
e QA'B'C'E')=B'F’
o QU'B'D'E)=A'D
e QA'C'D'E"Y=C'E'

There is no way that we can pick the directions
of the two remaining edges in the flip graph for
A'B'C'D'E' so that it is type I (see figure 4). This
contradicts @ being local and systematic.

Figure 4: Not a type I flip graph

If D € QY(ACE) \ Q*(ABE), the proof is the
same, except that we find A’B'C'E’ such that
Q(A'B'C'E’") = A'C’. This leads to a flip graph
that is figure 4 with all the arrows reversed. This
still can’t be type I. o

Lemma 2. If Q is a systematic local rule and C €
Q°(ABE)N'ABE then Qt(ABE) = Q*(BCE) in
the region ACE — ABC (the shaded region in fig-
ure 3). '

ProOF. Omitted. m]

Lemma 3. If Q is a systematic local rule and C €
Q°(ABE)NABE then Q*(ABE) = Q*(ACE) =0
in the region ABC

PrRoOF. Omitted O

Lemma 4. If Q is a systematic local rule and D €
Q°(ABE)NABE then (BDENABD) C Q*(ABE)

PrOOF. Omitted 0O

Lemma 5. If Q is a systematic local rule and
D € Q°(ABC) then Q*(ABC) = Q*(BCD) =
Q*(ACD) = Q*(ABD).

PROOF. D cannot be in ABCUABCUABCUABC.
Relabel the sites if necessary, so that D € ABC (see
figure 5). Note that C € Q°(ABD), B € Q°(ACD)
and A € Q°(BCD). We need to prove the result
in the regions ACD and ACD N BCD (shaded in
figure 5). The rest will follow by symmetry.



Figure 5:

e In the region ACD N BCD applying lemma 1
with ABE replaced by ABC shows that
Q*(ABC) = Q*(BCD) and with ABE re-
placed by ABD shows that Q*(ABD) =
Q*(ACD). Applying lemma 2 with ABE
replaced by ABC shows that Q*(ABC) =
Q*(ACD).

e In the region ABC, lemma 3 shows that
Qt(ABC) = Q*(ABD) = 0. Because Q is
a flip rule Q*(ABC) = 0, and Q*(BCD) = 0
because ABC C BCD.

e in the region BCD N ACD = I applying
lemma 4 with ABE replaced by ABC shows
that I C Q*(ABC) and with ABE replaced
by ABD shows that I C Q¥(ABD). I C
Q*(BCD) because I C BCD and I C
Q*(ACD) because I C ACD.

Finally we note that we have left out the lines AB,
BC and AC in the proof, but there is only one way
to complete Q*(ABC) onto these lines. m]

Theorem 1. If @ is a systematic local rule and
D,E,F € Q°(ABC) then Q*(ABC) = Q*(DEF).
(That is, Q is circumscribing.)

PROOF. By lemma 4, Q°(ABC) = Q%(ABD) =
Q°(ADE) = Q°(DEF). D

Theorem 2. If Q is a systematic local rule then
Q*(ABC) is convex.

PrOOF. If Q*(ABC) is not convex, then there
are points D,E € Q*(ABC) and F ¢ Q*(ABC)
such that F lies on the line segment DE (see fig-
ure 6). If F € Q°(ABC) then we can find new DEF
such that D,E € Q*(ABC) and F € Q~(ABC).
The segment DF goes from inside Q*(ABC) to
outside, so let D’ be a point where it intersects
Q°(ABC), and E’' a point where EF intersects
Q°(ABC). Let G € Q°(ABC) \ DE. (If we can’t
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G
Figure 6: Q*(ABC) is convex

find such a G then Q°(ABC) = DE, which contra-
dicts F € Q7(ABC).) Since F is on the edge of
D'E'G and F € Q= (ABC) = Q~(D'E'G) (by the-
orem 1) we can find an F' € D'E'GNQ~(D'E'G)
which contradicts @ being a flip rule. ]

2.2 Circumscribing rules are systematic and
local '

The proof that DT is systematic and local [11] relies
on the following geometric fact: If two circles share
a common chord, then on each side of the chord the
interior of one circle is a subset of the interior of the
other circle.

If @ is circumscribing then the same fact is true,
provided we replace “circle” with “curve from Q%”.
Consequently the same proof proves that circum-
scribing rules are systematic and local.

Furthermore, just as for the Delaunay triangu-
lation we have the “empty circle property”—the
circumcircle of each Delaunay triangle contains no
other site, for GOT(Q), Q systematic and local,
we have the “empty shape property”—the circum-
scribing curve for each triangle GOT(Q) contains
no other site.

2.3 The only rotation and translation invari-
ant systematic local flip rule is DT.

Definition. A directed line [ is a support line of
a set S iff I contains a boundary point (a support
point) of S and S is contained in the closed half-
plane to the left of I.

Definition. The two asymptotes of an unbounded
curve are the limits of the support lines as the sup-
port point goes to infinity.

Theorem 3. The only rotation and translation in-
variant systematic local flip rule is DT.

PROOF. Let @ be such a rule and K € Q°.

Case 1 K is bounded. Fujiwara [8] and Bol [4]
have shown that if K is a compact convex set
which is not a disc, then it is possible to find
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an infinite number of congruent copies K’ of K
such that K and K’ have at least four points in
common on their boundaries. It follows from
Theorem 1 that K = K’. Hence K has an
infinite number of symmetries and must be a
disc.

Case 2 K is unbounded. Let A; and A; be the
asymptotes to K, P their point of intersection,
and o the angle between them. Rotate K by
a/2 about P, translate by d in direction A; and
by d in direction A + /2 to get K’ (figure 7).
By making d sufficiently large we can ensure

Figure 7: K and K’ intersect three times

that A, is a chord of K’. Then the boundaries
of K and K’ intersect three times and by theo-
rem1 K = K’ i.e. @« = 0 and K is a half-plane,
which we can regard as infinitely large disc.

Hence Q°(ABC) is a circle for any three points A,
B, and C and by Theorem 1 this circle is the cir-
cumcircle of ABC and Q = DT. ]

2.4 The only systematic local homothetic
flip rules are generalized Delaunay rules.

At this point it might seem that a systematic local
homothetic rule () must necessarily be that of a De-
launay triangulation based on the convex distance
function induced by the “circle” Q°(ABC) [5], but
this is only true if Q° contains only homothets of
one shape.

Suppose Q°(ABC) is a square (see figure 8). This
is what you get in the I, metric. If D is in the
shaded region in figure 8 then it is not possible
to draw a scaled, translated copy of the square
Q°(ABC) through the sites ADB. Q°(ADB) must
be a different shape, for example, the bottom right
corner of a circle joined to an upwards ray and a
leftwards ray.

In general, the Q° curves will be homthets of a
collection of shapes. We can complete the exam-
ple with three more copies of Q°(ABD) rotated
through 90°, 180° and 270°.

c 0%4Bc)

&’(ADB)

A
Figure 8: Two different Q° curves

Theorem 4. Let Q be a homothetic systematic lo-
cal flip rule. Then K € Q° is either strictly convex
(contains no straight line segments in its boundary)
or a cone (boundary is two rays).

ProoF. Omitted : o

Theorem 5. If there is a finite number of shapes
in Q° then there is one bounded shape with all
the other shapes “rounding” off the corners of this
shape.

PrOOF. Omitted o

If Q° contains an infinite number of shapes then
the result is similar, except that it is possible to
have an infinite number of cones to fill in the space
between two cones.

How does this relate to cdf Delaunay triangula-
tion? We can define the Euclidean Delaunay tri-
angulation by the “empty circle property”—the tri-
angles of the Euclidean Delaunay triangulation are
just those whose circumcircles contain no other site.
Similarly, the cdf Delaunay triangulation can be de-
fined by the “empty shape property”—the triangles
are those whose circumscribing shapes are empty,
where the shape is just the unit circle for the cdf.
The triangulation described in theorem 5 is a fur-
ther generalization to a set of shapes instead of a
single shape.

If the cdf is not strictly convex then theorem 4
tells us that the corresponding flip rule is not local
and systematic. The problem here is that in this
case triangles with a side parallel to a line segment
on the boundary of the shape have more than one
circumscribing shape and the Delaunay triangula-
tion is not unambiguously defined. To resolve this
ambiguity one particular circumscribing shape must
be chosen (e.g. the bottom leftmost one [12]). This



is effectively treating the flat part of the boundary
as being very slightly curved, and the conditions of
theorem 4 hold.

If the cdf has corners then the conditions of the-
orem 5 are violated because there is no shape that
rounds the corners of the cdf. The problem here is
that triangles with two sides that are support lines
at the same corner of the cdf cannot be circum-
scribed and the cdf Delaunay triangulation does not
completely triangulate the convex hull of the input
sites. In this case we can add shapes to round the
corners of the convex distance function and the cdf
Delaunay triangulation is just a subset of the gen-
eralized one. This leads to simple new algorithms
(including a sweepline algorithm) for cdf Delaunay
triangulation (implementation details are in [13])
and constrained cdf Delaunay triangulation.

Finally we note that we can interpret our general-
ized cdf Delaunay triangulation as duals of Voronoi
diagrams in the surreal [9] Cartesian plane, where
the distance function is smooth (no corners) and
strictly convex.

3 Conclusion

Locally optimized triangulations are simple to de-
fine and compute, while the systematic and local
properties are important and useful properties for
a flip rule to possess.

I have shown that the only translation and rota-
‘tion invariant flip rule is the rule DT. This gives
some more reasons to support the use of the De-
launay triangulation as the most natural and useful
triangulation of a set of points.

I have shown that the only homothetic flip rules
correspond to empty shape Delaunay triangula-
tions, which generalize convex distance function De-
launay triangulations. Any Delaunay triangulation
algorithm can be modified to produce empty shape
Delaunay triangulations and consequently convex
distance function Delaunay triangulations.
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