405

Towards Exact Geometric
Computation *

Chee-Keng Yap
Courant Institute of Mathematical Sciences
New York University
251 Mercer Street
New York, NY 10012

July 12, 1993

Abstract

Exact computation is a fundamental premise of most algorithms in
computational geometry. In practice, implementors perform computation
in some fixed-precision model, usually the native floating-point arithmetic.
Such implementations have many well-known problems, here informally
called “robustness issues”. To reconcile theory and practice, authors have
suggested that theoretical algorithms ought to be redesigned to become
robust under fixed-precision arithmetic. We suggest that in many cases,
implementors could make robustness a non-issue by computing ezactly.
The advantages of exact computation are too many to ignore. Many of
the presumed difficulties of exact computation are partly surmountable
and partly inherent with the robustness goal.

We examine the practical support needed to make the exact approach
a viable alternative. It turns out that exact computation encompasses
an extremely rich set of computational tactics. Our fundamental premise
is that the traditional “BigNumber” package that forms the work-horse
for exact computation must be re-invented to take advantage of many
features found in geometric algorithms. Beyond this, we postulate several
other packages must be built on top of the BigNumber package.

1 Introduction

In recent years, there has been considerable interest in “robust” geometric algo-
rithms. In practical terms, an algorithm is termed non-robust if it can precipi-
tate unpredictable failures during execution. It is clear that such failures occur

*Work on this paper is supported by NSF grant #CCR-87-03458

406

with a sufficiently high probability to cause widespread concern. This concern
is expressed in many diverse communities, and many ingenious and practical so-
lutions have been proposed. The unexamined premise in most of these solutions
is the commitment to fized-precision computation. We suggest that the alterna-
tive approach based on ezact computation has a much larger role to play than
currently practiced. In any case, the goal of robust computation is better served
when both approaches are well-represented. Of course, we are partisan in this
quest, and only hope to contribute to the development of exact computation.
This paper outlines our thoughts on a research agenda that forms the basis of
some on-going research with Tom Dubé [5]. Although we address ourselves to
geometric algorithms, it is clear that many of these ideas apply to related fields.

- Fixed-precision Computation. The root cause of non-robustness seems

clear: whereas algorithms are described in exact mathematical terms, their
implementations replace the exact arithmetic with fixed-precision arithmetic.
Floating-point arithmetic is the usual example of fixed-precision arithmetic.
The high probability of catastrophic loss of significance in such computations in
practice is confirmed in theoretical models ([8]). More powerful fixed-precision
models (e.g., level-index arithmetic [2]) may be useful in delaying the robust-
ness problem. In practice, the problem is fixed using some ad-hoc method that,
at best, decreases this failure probability. It often amounts to svhat is known
in the trade as “epsilon tweaking” (choosing the right constant for some ep-
silon parameter in the code). Observe that robustness issues already appear in
purely numerical computation (e.g., [21]); one can only imagine such problems
to be compounded in geometric computing, whose essence is captured in the
aphoristic equation,

Geometric Computing = Numerical+Combinatorial Computing.

Robustness issues arising from the interplay between numerical and combina-
torial elements of geometric algorithms is illustrated in, for example, Hoffmann
[11]. To address this problem, some have insisted that algorithmic design should
take account the use of fixed-precision arithmetic. This has led to the following

. difficulties:

e Robust algorithms are not known for many conceptually simple problems.
For instance, the problem of intersecting two polygons [25].

e When robust algorithms are achievable, they seem to require inordinate
effort relative to the known exact algorithms. Moreover, the techniques
do not easily generalize. But even the true significance of these robust
algorithms may be open to interpretation (see §3.2).

e Fixed-precision geometric models to approximate the original continuous
models are invariably hard to work with and retain very few of desired.

properties. For instance, the concept of a fixed-precision “line” has vari-
ously been modeled by (i) using a suitable set of pixels, (ii) fattening the
line into a tubular region, (iii) by some “monotone” polygonal path, or (iv)
an actual line whose equation has bounded coefficient sizes. Beside losing
many desirable properties of lines, these models give rise to complicated
algorithms.

e A more basic approach is go back to the arithmetic model and to introduce
uncertainty there. Logically, this means we have at least a third truth
value corresponding to “not-sure”. There are many forms of this approach.
For instance, the well-known interval arithmetic. Symptomatic of this
general approach, we find that the intervals in interval arithmetic can
quickly grow into fairly worthless bounds in the course of a computation.

These criticisms cannot be attributed to a lack of effort (although, it is true
that computational geometers are relative new-comers in this enterprise). The
optimist might still say that we need more time. But perhaps the difficulty is
more basic: there will be no satisfactory solution until we confront the specter
of exact computation and understand what is inherently involved there. We
hope to show that there is much more to the idea of exact computation than
what we might initially suspect.

Exact Computation. We now switch to a discussion of exact computation.
Roughly speaking, “exact computation” means that we do not use any kind of
approximation, and so no errors are ever committed during the computation.
The first and foremost advantage of exact computation is that “robustness”
is a non-issue! All classical geometric concepts are preserved. In contrast to
the obscure theories of approximate geometry, classical geometries (Euclidean
or otherwise) have many theorems and many important cases (planar geome-
try!) are relatively well-understood. So we can reason with classical objects
with relative confidence. More pertinent, practically all geometric algorithms
in the literature pertains to classical geometries. Thus, exact computation is a
“generic” solution (cf. [22]) to the robustness issue, not a special fix for each
particular problem. Another advantage is that we can sometimes use symbolic
‘perturbation methods to automate the handling of degeneracies, thus simplify-
ing our coding of algorithms (cf. [7,23]).

Given these advantages, why is exact computation is almost never used in
practice? We suggest that misconception and culture each has a role. For many,
it is simply assumed that except for very special domains such as number theory
and algebra, all continuous domain computations must be approximate. This
common misconception is easy to dispose of. The claim that exact computation
is too inefficient is much harder to counter. The floating point culture is so
entrenched and enjoys so much infrastructural support (hardware or otherwise)
that this claim is partly self-fulfilling. It is true in some sense that exact compu-
tation is inherently slower than floating point. But by the same token, one can

407

408

claim that floating-point is inherently non-robust. Then it is up to the user to
decide which horn of this dilemma to choose. (Of course the truth is somewhere
between these two positions.) While we cannot make that decision for any user,
we believe that the user should be presented with viable alternatives. It is the
premise of this research that the true viability of exact computation has not
been well-represented. So this is our first goal:

(G1) To improve the practical cost of exact computation.

The emphasis here is on “practical”, although we indicate interesting theoretical
issues as well. For now, we just note that what makes (G1) interesting is the
fact that exact computation turns out to be extremely rich — it is not just a
matter of carrying out each arithmetic operation without error (which would be
boring indeed).

With respect to the user dilemma above, it is clear that certain users are
unwilling to pay the inherent cost of exact computation. For instance, [25]
concluded that “exact computation is not feasible for the problem of point clas-
sification”. There may be hidden assumptions that make this conclusion true,
but in general, such unqualified conclusions are unjustified. Surely if robust-
ness is important enough (say, it relates to the success of a mission into space),
then exact computation may be the only choice. The literature contains many
such claims based on ad hoc or unjustified criteria. We need sorhe theoretical
framework to mediate the true differences between exact and finite-precision
computation. This is the basis for a second goal:

(G2) To study the inherent tradeoffs between speed and precision, between
fixed-precision and exact computation.

This is a more abstract goal, involving the construction of theoretical models
and posing paradigmatic problems. In this regard, we may recall the conceptual
framework that complexity theory provides for the entire field of algorithms.

Varieties of precision. We should acknowledge that any simple characteri-
zation of exact versus fixed-precision approaches will runs into gray areas. For

" instance, we may distinguish between degrees of fixed-precision: the most re-

strictive form of fixed-precision prevails in most practice, where there is a univer-
sal precision depending on the machine word-size for all computations. A local
form of fixed-precision is where each variable carries its own precision which is
fixed throughout the computation. This idea is very useful if the caller of the
geometric algorithm is only capable of using a certain of precision. For instance,
the caller may be a graphics display unit that has a certain screen resolution.
Indeed, as we will show, many exact algorithms can be carried out using this
local version of fixed precision. This shows exact computation may well allow
some internal approximation, which is indicative of the richness of what comes
under the rubric of exact computation. Conversely, not all algorithms that use

some local fixed-precision qualifies as “exact”. Other variations are possible: for
example there is a language developed for numerical computation there is the
concept. of a precision block. One iterates the computation of that block with
increasing precision until a desired goal is attained.

Remark. There are genuine problems of rounding or approximation. That is
to say, there are rounding questions that are inherent in the problem formula-
tion, not just artifacts of using fixed-precision arithmetic to approximate exact
arithmetic. A simple example is the problem of transforming a simple polygon
so that it remains a simple polygon but such that each vertex is “snapped” to
one of the four corners in the lattice square containing the vertex. It is not
surprising that such problems can be N P-hard in view of their combinatorial
nature. But they are outside our scope.

2 What is Exact Computation?

We first clarify our use of the term. By an “exact computation”, we mean that
a computational process that

(i) represents the underlying mathematical objects in an ezact manner, and
(i) in the course of computation, never makes an error in its decision.

We understand in (i) that mathematical objects are characterized by suitable
numerical parameters. To say that that the parameters “exactly” represent
an object means that we can decide when two such objects are equal or not
equal from these parameters. The representation (i.e., parameters) need not be
unique. :

Example. These concepts are illustrated by the representation of algebraic
numbers. By definition, an algebraic number is the root of an univariate poly-
nomial with integer coefficients. For instance, the number /5 is an algebraic
number as it is a root of X2 — 5. We know that there is no finite representation
of v/5 = 2.236068... in positional notation. But V5 can be represented exactly
as the pair (X2 — 5,[1,4]), interpreted as the unique root of the polynomial

" X2 -5 lying in interval [1,4]. This is called the 1solating interval representation
of real algebraic numbers. Of course, (X3 —5X, [2, 3]) would represent the same
number exactly, while (X2 — 5,[—3, 3]) represents no number because the range
[—3, 3] does not contain a unique root of the equation.

Clearly the precision of numbers used in such representations must be ar-
bitrarily large. The fact that we can represent v/5 exactly suggests that in
some sense, we have infinite precision. However, the terms “arbitrary precision
computation” or “infinite precision computation” are inadequate substitutes
for “exact computation”. We said that exact computation means that nothing
is done approximately. In some sense, [1,4] is an approximation to V5, and

409

410

[2,3] is an even better approximation. But our representation of v/5 itself is no
approximation.

We understand in part (ii) in our definition of exact computation that, with
respect to the representation of objects, there are effective procedures to com-
pute and make decisions about these objects. In the context of algebraic num-
bers, this usually means that we can perform the usual arithmetic operations
(4, -, x,+) and determining the sign of real algebraic numbers. Henceforth, we
focus only on real algebraic numbers since the complex ones can be represented
as a pair of real algebraic numbers. Note that the set of real algebraic numbers is
closed under the arithmetic operations. For instance, if « is a root of 3 ;. ¢; X*
then —a is a root of Y i ((—=1)""*¢;X*. If o, B are roots of P(X),Q(X) (re-
spectively) then a + 3 and af are roots of

resy (P(Y),Q(X —Y)), resy(P(Y),Y"Q(X/Y))

where resy (P(Y), Q(Y)) denotes the classical resultant of two polynomials in
Y. Since a resultant is a determinant, and using some classical bounds on the
separation of roots, we conclude that the the basic arithmetic operations and
the sign of algebraic numbers can be effectively computed. For instance, we
should be able to give the isolating interval representation of v/5 — v/3 and
determine the sign of 2v/5 —2/3 — 1. Actually, algebraic numbers have another
important closure property: the root of a polynomial with algebraic coefficients
is algebraic. We roughly call this the root eztraction operation (begging the
question as to how one specifies the particular root of interest). Note that
division and subtraction can be viewed as root extractions of linear polynomials.
For more details on computing with algebraic numbers, see for instance [3,24].

2.1 Algebraic problems

Our example of algebraic numbers is felicitous because most problems in com-
putational geometry can be computed ezactly, via a reduction to eract algebraic
number computations. Of course, it must be assumed that the inputs to a prob-
lem is exact. We call such problems algebraic. Let us illustrate some algebraic
problems.

Consider the problem of finding the shortest path between two points avoid-

. ing a set of polyhedral obstacles in Euclidean n-space. Euclidean distances

between two points involve the taking of square roots. Thus the length of a
polygonal path in n-space is a sum of square roots, and thus an algebraic num-
ber. All known shortest path algorithms can be reduced to making decisions by
comparing the relative lengths of two polygonal paths. Thus such problems can
be solved exactly. Similar problems include the Euclidean versions of spanning
tree and traveling salesman.

Certain problems that apparently involve transcendental functions are actu-
ally algebraic problems in disguise. For instance, consider the so-called motion
planning problem [14] where the robot and the obstacles have piecewise algebraic

boundaries, and we seek the feasibility of an obstacle-avoiding motion between
two positions. Since the robot can rotate, we might generally expect that the
calculations would involve trigonometric functions. However, it turns out that
we can exploit the algebraic relations among such functions and avoid tran-
scendental decisions. Thus we view sinz and cosz as two algebraic quantities
connected by the relation sin® z + cos?z = 1.

The class of algebraic problems is very large. We caution that in general,
these problems have exponential complexity. Essentially, these problems can
all be reduced to the decision problem in Tarski’s language, which is the first
order theory of real closed fields. The general upper-bound on these problems
has seen tremendous progress in recent years. These results yield the following
important meta-theorem: algebraic problems in computational geometry have
a single-ezponential space complezity. Furthermore, some of these problems
are provably intractable — by reduction to the decision problem of the theory
of real addition, which Rabin and Fisher have shown to be nondeterministic
exponential-time complete.

3 Rational Bounded-degree Problems

Since algebraic problems in general are intractable, we seek tractable subclasses.
Many problems do not require the full power of algebraic computation, requir-
ing only the four arithmetic operations but not root extraction. Assuming the
problem inputs involve only rational numbers, we call these rational problems.
For instance, linear programming or constructing hyperplane arrangements [6].
Note that essentially the convex hull problem is reducible to hyperplane ar-
rangements.

Another important restriction is the concept of degree of derivation (cf. [23]):
relative to a set U of numbers, a number z is of degree 0 if z € U; z is of degree
at most d+1 if z is obtained by one of the rational operations applied to numbers
of degree at most d, or by root extraction from a degree k polynomial where
each coefficient of the polynomial has degree at most d — k + 1. An algorithm
has degree at most d if there is a finite set K of numbers (i.e., the constants in

- the algorithm) such that on any input set X, all intermediate values computed
by the algorithm are of degree at most d relative to U = K U X. A problem is
bounded-degree if it can be solved by an exact algorithm of at most some fixed
degree.

A problem is rational bounded-degree (RBD, for short) if it can be solved
by an algorithm of bounded-degree that performs only rational operations. Of
course, the (actual) degree of an algorithm or problem is the least d such that it is
of degree at most d. We note that the class of RBD problems encompasses most
of the computational problems in contemporary computational geometry (for
instance, see the problems treated in the standard texts [6,13]). The following
is an obvious but key property of RBD algorithms:

411

412

There s a constant D such that if the input instance to the algorithm
involves rational numbers of size (at most) n, then the intermediate
computation tnvolves only rational numbers of size Dn.

Here, the size of a rational number p/q is just the maximum of the bit sizes of p
and ¢. Thus, assuming that n is the machine word size, then we can implement
all arithmetic exactly by representing an integer with D words. We conclude:
RBD algorithms can be implemented using exact arithmetic with only a constant
factor C slow-down. Clearly, C' depends on D. Using classical algorithms for
arithmetic, we have C = O(D?).

The constants C' and D are crucially important to our goal (G1). Note that
we are outside the realm of asymptoptics when we discuss these constants. We
can take D = 2¢ if the RBD algorithm has degree d. This 2¢ bound could be
improved in some cases.

Example. Suppose our algorithm only has to compute (repeatedly) determi-
nants of k£ x k matrices, for some fixed k. Moreover, assume that the determi-
nants are evaluated on the input values. It is well known that convex hulls of
point sets in dimensions k — 1 can be solved by such algorithms.! The degree of
the algorithm depends on how one implements the determinant computation.
For instance, using standard Gaussian elimination, the degree is d = O(k®) but
D = 2F is overly pessimistic. In the full paper, we discuss this in more detail,
showing how homogeneous coordinates can help to reduce D.

3.1 Unbounded-degree problems

There are not many natural problems in traditional computational geometry
that are rational but not bounded-degree. But imagine a geometric editor in-
volving just points and lines, and where we are allowed to construct a new point
as intersection of two prior lines and we can construct a new line through two
prior points. Note that this is not a “computational problem” in the usual un-
derstanding of the word. Alternatively, imagine a solid polyhedral modeler in
which we can do rational transformations of solids and perform Boolean oper-

- ations on solids. Each transformation and operation on these solids increases

the degree of derivation. Clearly each intersection or transformation step in-
creases the degree of derivation of the object, and we will generally need more
and more precision to represent the objects exactly. It is not surprising that
fixed-precision fails notoriously. It would be interesting to formalize and prove
that this must be so (goal (G2)). An artificial form of this phenomena which is
useful for numerical experimentation was invented by Dobkin and Silver [4]: it
is based on repeated application of two operations (going-in, going-out) on an

1Such algorithms can also solve convex hulls in dimension k but the determinants are
evaluated on values of degree 1 rather than degree 0 (input values).

initial pentagon and the fact that in the exact world, going-in and going-out are
inverses.

3.2 Some robust algorithms

There are some apparent successes in achieving robust algorithms using fixed-
precision. For instance, a systematic approach to robustness has been outlined
by Sugihara and Iri in several papers (e.g., see [18,17,19,20]). They propose to
view geometric algorithms as constructing combinatorial structures guided by
numerical computations. If we can structure such algorithms so that no redun-
dant combinatorial decisions are made, then the algorithm can be made robust.
More generally, we may say that the philosophy is to give priority to combina-
torial data over numerical data. The Sugihara-Iri approach has been applied
to several examples such as Delaunay triangulations and the gift-wrapping 3-
D convex hull algorithms. Still, stability does not seem easy to achieve [20].
As another example, Fortune [9] has described two robust O(n?) algorithm for
planar Delaunay triangulation. ;

It turns out that these success stories all fall under the RBD class. So we
could solve these problems exactly, at the cost of some constant C multiplicative
factor. Why would one exchange an Cnlogn exact algorithm for an C'n2 ap-
proximate algorithm as in the Delaunay triangulation problem?. This depends
on C'and C’. It is believable that with fine-tuning, one can make this C compet-
itive, even assuming C’ = 1. One of our goals is to achieve this using techniques
that are general, rather than just special to say, Delaunay triangulations. We
have here a concrete research question: carry out empirical studies comparing
the robust fixed-precision algorithms to exact algorithms for these problems.

4 Re-inventing BigNumbers

We now address research goal (G1), which is simply to reduce the cost of us-
ing exact computation. Just as a floating-point package is the basis of most
fixed-precision computation, a “BigNumber package” is the basis of all exact
.computation. Naturally this must be the first place to begin our investigation.

BigNumber packages, although widely available, have no hardware support
(and barely a priority for software support). A notable attempt to put large
integer multiplication in hardware is reported in [1,16] using the concept of
programmable active memories. Their hardware multiplies 512-bit integers;
when coupled to low-end workstations, it apparently outperforms the fastest
computers of its day (circa 1990). One should note that the motivation there
is cryptography, which has different concerns than us. Still, such a piece of
hardware would go a long way towards making exact solution of RBD problems
competitive and practical. While this is surely an avenue for more work, we
henceforth focus on software solutions.

413

414

First, we can simply try to improve on traditional BigNumber packages. One
attempt is reported by Vuillemin, Hervé and Serpette [15]. They also suggested
that any BigNumber package written in a high level language stands to gain a
factor of 4 — 10 when hand-crafted code is employed. In view of the anecdotes
(see below), this improvement alone is insufficient.

'Some anecdotes. The first reality we face when using BigNums is not en-

couraging: off-the-shelf use of this package incurs a tremendous overhead. For
instance, in the case of exact integer computations, Fortune and Van Wyk [10]
said that their program becomes slower by a factor of 100-140. Note that the
comparison is made against a floating-point implementation. This methodology
seems standard and we will keep it for this discussion. If exact rational number
comiputations are used off-the-shelf, Karasick, Lieber and Nackman [12] reports
a slowdown factor of 15,000. The good news is that in both cited papers, careful
fine-tuning eventually reduce these factors to a small constant factor (say, less
than 10).

What is the significance of this “anecdotal number 10”? Note that a factor of
10 in the numerical part of an algorithm would only slow the overall algorithm
down by a factor of 3 if the algorithm uses only 25% of its time in number
crunching. For many applications, we believe such a small penalty tilts the
balance in favor of exact computation if robustness is important- In any case,
comparing an exact algorithm against an approximate algorithm (assuming that
robustness has been achieved) which is thrice faster must come down to user
priorities. But more can be said. For the sake of argument, let us assume that
the anecdotal number 10 is technology-independent, that is, it will not change
with improving hardware. In a world where machine speed doubles every other
year, a small technology-independent constant seems negligible.? Again, with
the increasing commercial availability of medium-scale parallel computers (of
a dozen nodes, say), small technology-independent constants will be even less
significant. 3

It is not hard to identify one source of inefficiency with sta.ndard BigNum
packages. One pays a large overhead for its generality, and in particular, one

_pays for its space management facilities. The heritage of “BigNumber packages”

seems to come from computer algebra applications. The basic assumption in
computer algebra systems that we cannot predict the precision needed during a
computation is reasonable. But in computational geometry, as we have argued,
the opposite assumption usually holds. Hence one approach is to build a poor-
man’s BigNum package to exploit this property. In other words, we wish the
constant factor C to as close to 1 - D? as possible. In fact, more sophisticated
o(D?) techniques seems possible with handcoding for small D. Alternatively,
we want C to approach the anecdotal number 10. (D? = 107)

2 Just wait a few years instead of doing any research. : —)
3Just throw some $$$ at the problem instead of waiting. : —()

5 Beyond BigNumbers

To support a rich geometric computing environment, a number of other packages
must be built on top of the BigNum package. We suspect that this, rather than
achieving the ultimate value of the constant C, will encourage more use of exact
computation. We outline some of these.

BigFloats. We had already mentioned that the idea of computing exactly is
capable of a variety of interesting interpretations. One is the idea of computing
each number z; up to some prescribed precision p;. In the usual fixed-precision,
there is a fixed p for the entire computation, but here, pi is localized to each
number z;. Although in general, we may want p; to change dynamically, this
1is not important for us. The basic principle of exact computation is preserved
in the sense that we ensure that p; is sufficient precision to make the neces-
sary decisions exactly. For instance, in many problems we only need the sign
of a determinant, not its value. Hence some low precision may suffice for this
determination. This suggests that we introduce a number representation with
arbitrary but specified precision. Moreover, we want this precision to be inde-
- pendent of the magnitude of the number. The latter idea is of course embodied
in floating numbers: a floating number is a pair (e, f) where e, f are integers
representing f - 2°. Since e, f will be represented by BigNums, we call such
representations BigFloats. We are currently developing a BigFloat package [5]
which incorporates the idea of having a prescribed absolute and relative preci-
sion. For integers a,r, we say that a real number z is approzimated by another
real number Z with composite error (a,r) if either the absolute error |z — 7| is
at most 27% or the relative error |[(z — Z)/z| is at most 2". We write

-~z ~TZerr(a,r)

The important thing to note about this concept of composite error is that, for
any given the approzimate number % err(a, r), we can essentially decide whether
the approximation is in the absolute error regime or the relative error Tegime.

" Expression package. We want to build a ezpression evaluator on top of the
number packages (BigNums, BigFloats, etc). In our work on data degeneracies
(23], we have already postulated the use of such an evaluator which has some
additional properties to allow symbolic perturbation. A form of this idea was
implemented by Fortune-VanWyk [10].

The most basic class of expressions is the class of multivariate polynomi-
als. This class includes determinants which arise frequently in computational
geometry. It is important to understand why BigEval (the name of the evalua-
tor function) can be a major advancement over the traditional uses of number
packages: traditionally, the algorithm calls the package for each arithmetic op-
eration. The package has no idea how these calls are interrelated, thereby it

415

416

must forgo any possible optimizations across calls. In contrast, BigEval has
opportunity for

e preprocessing of the expression (E.g., global analysis of the expression and
restructuring of the expression)

e run-time optimization (E.g., look ahead in an evaluation and lazy evalu-
ation methods). :

The form of these expressions can be optimized as follows. In the vanilla ver-
sion, we have the usual arithmetic operators with constant or variable operands.
But there is opportunity to improve the evaluation process if we allow general-
izations of these operators: product operator [];_,, summation operator pIrAp
multiplication by a constant, addition by a constant, and raising to a constant
power. For instance, in the summation operator, it may make sense to classify
the arguments according to their signs (if they can be determined).

Geometric Objects. There ought to be packages whose fundamental objects
are larger units than numbers. The simplest of these are points and hyperplanes
(both can be viewed as types of vectors). The natural operations involving these
objects can be specially implemented rather than left to the number packages
(or even BigEval). Again, the fact that the nature of these objects are known
to the packages means more opportunity for optimization. We mention that the
use of homogeneous coordinates of vectors has certain benefits. Indeed, rational
number (BigRat) can be viewed as a special case of homogenous vectors.

Heterogeneous representations. The traditional BigNums assume a ho-
mogenous internal representation, usually as the positional notation. It is some-
times useful to allow other internal representations: for instance, number ex-
pression such as 2!%°° — 1 may be superior to explicit binary notation using
999 bits. Of course, this complicates the internals and conversion routines must
be provided. This idea applies equally to other domains such as BigFloats as
well. This is not so much another package as the idea that there may be many

.flavors of packages, and these should be tied together in a seamless way. Object

oriented languages can be effectively used here.

6 Summary

1. Exact computation is not much used despite the promise of many benefits. In
fact, reported attempts to try exact computation often result in its rejection as
too inefficient. We have argued that this inefficiency does not appear inherent,
although theoretical confirmations of this remains to be done with appropriate
models. Perhaps an even more compelling reason for exact computation is that
the alternative of fixed-precision computation is even less hopeful.

2. We began by clarifying the concepts of exact computation, including its
scope for algebraic problems. We suggest that the most promising problems for
exact computation are in the pervasive class of rational bounded-degree (RBD)
problems.

3. We gave an outline of how the development of exact computation can
proceed. This already reveals that exact computation embraces many important
computational techniques (tactics) which are clearly unexplored.

4. The first step involves a re-thinking about the traditional BigNumber
- package. Indeed, there are several different forms of BigNum packages that
should be implemented. Beyond this, several additional layers must be added
to address a variety of computational domains.

5. Although we believe there ought to be hardware support for exact com-
putation, this is unlikely in the near future. Impetus for its development may
have to come from successful software exploitation first.

Acknowledgements

I would like to thank my colleague and collaborator Tom Dubé for many discus-
sions on these issues. His insights into implementations and number packages
has been invaluable.

References

(1] Patrice Bertin, Didier Roncin, and Jean Vuillemin. Introduction to pro-
grammable active memories. Research Report 3, Digital Paris Research
Laboratory, June, 1989.

[2] C.W. Clenshaw, F.W.J. Olver, and P.R. Turner. Level-index arithmetic:
an introductory survey. In P.R. Turner, editor, Numerical Analysis and
Parallel Processing, pages 95-168. Springer-Verlag, 1987. Lecture Notes in
Mathematics, No.1397.

[3] J. H. Davenport, Y. Siret, and E. Tournier. Computer Algebra: systems
and algorithms for algebraic computation. Academic Press, 1988.

[4] David Dobkin and Deborah Silver. Recipes for Geometry & Numerical
Analysis — Part I: An empirical study. ACM Symp. on Computational
Geometry, 4:93-105, 1988.

[5] Thomas Dubé and Chee Yap. A basis for implementing exact computa-
tional geometry, August, 1993. (to appear).

[6] Herbert Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-
Verlag, 1987.

417

418

[7] Herbert Edelsbrunner and Ernst Peter Miicke. Simulation of simplicity:
a technique to cope with degenerate cases in geometric algorithms. ACM
Symp. on Computational Geometry, 4:118-133, 1988.

[8] A. Feldstein and P.R. Turner. Overflow, underflow, and severe loss of
significance in floating-point addition and subtraction. IMA J. Numer.
Analysts, 6:241-251, 1986.

[9] Steven Fortune. Numerical stability of algorithms for 2-d Delaunay triangu-
lations and Voronoi diagrams. In Proc. 8th Annu. ACM Sympos. Comput.
Geom., pages 83-92, 1992.

[10] Steven Fortune and Christopher van Wyk. Efficient exact arithmetic for
. computational geometry. ACM Symp. on Computational Geometry, 9:163—
172, 1993.

[11] Christoph M. Hoffmann. Geometric & Solid Modeling: An introduction.
Morgan Kaufmann Publishers, Inc, San Mateo, California 94403, 1989.

[12] M. Karasick, D. Lieber, and L. R. Nackman. Efficient Delaunay triangula-
tion using rational arithmetic. ACM Trans. on Graphics, 10:71-91, 1991.

[13] Franco P. Preparata and Michael Ian Shamos. Computational Geometry.
Springer-Verlag, 1985. -

[14] Jacob T. Schwartz and Micha Sharir. On the piano movers’ problem: II.
General techniques for computing topological properties of real algebraic
manifolds. Advances in Appl. Math., 4:298-351, 1983.

[15] B. Serpette, J. Vuillemin, and J.C. Hervé. BigNum: a portable and efficient
package for arbitrary-precision arithmetic. Research Report 2, Digital Paris
Research Laboratory, May, 1989.

[16] Mark Shand, Patrice Bertin, and Jean Vuillemin. Hardware speedups in
long integer multiplication. 2nd Annual ACM Symposium on Parallel Al-
gorithms and Architectures, 1990. Crete.

“[17] K. Sugihara aﬁd M. Iri. Two design principles of geometric algorithms in

finite precision arithmetic. Applied Mathematics Letters, 2:203-206, 1989.

[18] K. Sugihara and M. Iri. Geometric algorithms in finite-precision arith-
metic. Research Memorandum RMI 88-10, Department of Math. Engi-
neering and Instrumentation Physics, Faculty of Engineering, University of
Tokyo, September, 1988. Presented at 13th International Symposium on
Mathematical Programming, Tokyo, Aug 29-Sep 2, 1988.

[19] K. Sugihara and M. Iri. A numerically stable method for Voronoi diagram
construction. Proceedings of the 1988 Fall Conference of the Operations
Research Society of Japan, Tokyo, pages 2021, September 28-29, 1988.

[20] Kokichi Sugihara. Robust gift-wrapping for the three-dimensional convex
hull. Journal of Computer and System Sciences, 1993. To appear.

[21] von S.M. Rump. How reliable are results of computers? Jahrbuch
Uberblicke Mathematik, pages 163-168, 1983. Trans. from German Wie
zuverlissig sind die Ergebnisse unserer Rechenanlagen?

[22] Chee K. Yap. A geometric consistency theorem for a symbolic perturbation
scheme. Journal of Computer and System Sciences, 40(1):2-18, 1990.

[23] Chee K. Yap. Symbolic treatment of geometric degeneracies. Journal
of Symbolic Computation, 10:349-370, 1990. Proceedings, International
IFIPS Conference on System Modelling and Optimization, Tokyo, 1987,
-Lecture Notes in Control and Information Science, Vol.113, pp.348-358.

[24] Chee-Keng Yap. Fundamental Problems in Algorithmic Algebra. Princeton
University Press, (to appear).

[25] Jiaxun Yu. Exact arithmetic solid modeling. Technical Report CSD-TR-
92-037, Computer Science Department, Purdue University, June, 1992.
PhD dissertation.

419

