426

Widest-Corridor Problems

Ravi Janardan*

Franco P. Preparatal

June 2, 1993

1 Introduction

Let S be a set of n points in the Euclidean plane.
A corridor through S is the open region of the plane
that is bounded by two parallel straight lines that
intersect the convex hull, CH(S), of S. The width of
a corridor is the distance between the bounding lines.
A corridor is called k-dense if it contains k points of
S, where 0 < k < n—2. (As we will see later, each of
the bounding lines must contain at least one point of
S, and hence k < n —2.) A widest k-dense corridor
through S is a k-dense corridor of maximum width.

The problem of constructing a widest k-dense cor-
ridor arises in robot motion-planning. In [HMS88],
Houle and Maciel gave an O(n?)-time and O(n)-space
algorithm. Subsequently, Chattopadhyay and Das
[CD90] showed how to compute a widest k-dense cor-
ridor, 0 < k < n — 2, in O(n?logn) time and O(n?)
space. In this paper, we present efficient algorithms
for several versions of the widest k-dense corridor
problem. Our results include:

1. A simple sweepline algorithm to compute a
widest k-dense corridor through S in O(n?logn)
time and O(n) space, where 0 < k < n — 2.
This improves upon the space bound in [CD90].
Moreover, using this approach we can (i) com-
pute a widest k-dense corridor for each k, where

k=0,1,...,n—2, in O(n®) time and O(n) space

and (ii) compute in O(n?logn) time and O(n)
space a minimum-density corridor of width at
least w for any given real number w (provided
such a corridor exists for the given w).

2. An algorithm to dynamically maintain a widest
empty corridor in O(nlogn) time and O(n?)

*Dept. of Computer Science, University of Minnesota, Min-
neapolis, MN 55455. Email: janardan@cs.umn.edu. Research
supported in part by NSF grant CCR-92-00270.

tDept. of Computer Science, Brown University, Providence,
RI 02912. Email: franco@cs.brown.edu. Research supported
in part by NSF grant CCR-91-96176.

space as points are inserted and deleted online
in S. This is considerably more efficient than re-
computing a widest empty corridor from scratch
after-each update.

3. An algorithm to compute a widest empty corri-
dor through a set of polygonal obstacles in the
plane in O(n?) time and O(n) space, where n
now is the total number of edges of the polygons.

4. An O(kn?)-time and O(kn?)-space algorithm for
computing a widest k-dense corridor through S,
0 < k £ n—2. This algorithm is faster than
our algorithm in 1 above for small k, i.e., when
k = o(logn); however, it uses more space.

5. A k-dense closed corridorthrough S is the closed
region of the plane that is bounded by two par-
allel lines that intersect CH(S) and which con-
tains k points of S, where 2 < k < n. For
2 <k < n -2, our results (and those of [CD90])
carry over to k-dense closed corridors as well. As
observed in [CD90], a widest n-dense closed cor-
ridor is determined by a diametral pair of S and
hence can be computed in O(nlogn) time and
O(n) space [PS88]. Here we show how to also
compute a widest (n — 1)-dense closed corridor
in O(nlogn) time and O(n) space.

Our approach in Results 1-4 are based on geomet-
ric duality and on the topological-sweep paradigm
[EG89]. Result 5 is based on an efficient technique
for searching in the convex layers of a planar point-
set. Due to space constraints, we discuss here only
Results 2-5 and omit all proofs and many details. We
refer the reader to [JP93] for the full paper.

2 Preliminaries

The following theorem states a key property of widest
k-dense corridors.

Theorem 2.1 ([HMS88, CD90]) Let C* be
a widest k-dense corridor through S, with bounding
lines £ and £"”. Then one of the following conditions
must hold: '

(a) One of the lines, say £, passes through two points
pi and p; of S and £" passes through a point p; of S,
or

(b) there are points p; and p; of S such that ¢
passes through p;, £’ passes through p;, and ¢ and
¢ are perpendicular to the line passing through p;
and p;. O

Let us reinterpret conditions (a) and (b) in the dual
plane, under the standard duality transform F, which
maps a point p = (a,b) to the line F(p) : y = az — b
and the non-vertical line £ : y = mz — ¢ to the point
F(€) = (m,c). Let H be the set of lines & = F(p;),
where p; € S. Let A be the arrangement of H. Let
vij = £; N4; be any vertex of A and let z(v;;) denote
its abscissa. Let C be any k-dense corridor through
S. It is easy to show that:

If C is a type (a) corridor, then F(¢') = v;; and
F(£") is the point where the vertical line through vij
intersects £. If C is a type (b) corridor, then F(#)
and F(£") are points on £; and ¢;, respectively, where
both points have abscissa —1/z(v;;). Moreover, if C
is a type (a) (resp. type (b)) corridor and £ is any
line that is parallel to £ and £” and contained in C,
then z(F(£)) = z(vi;) (resp. z(F(€)) = —1/z(wi;))
and y(F(£)) < y(F(9)) < y(F(£")).

Thus, in either case, the dual of C, which we
denote by F(C), is the open vertical line segment
bounded by F(¢) and F(£’). Moreover, C is a k-
dense corridor through S if and only if F(C) in-
tersects k lines of H. Also, the width of C is

[y(F(£)) = y(FENI/\/1+ =(F(C))>.

We can now compute C* as follows: We consider
each vertex v;; of A in turn, find the (k + 1)st line
vertically above it (if it exists), and compute the cor-
responding type (a) k-dense corridor. Similarly for
the (k + 1)st line vertically below v;;. We also check
whether at abscissa —1/2(v;;) there are exactly &
lines between 4 and ¢4; (excluding ¢ and ¢; them-
selves) and, if so, then we compute the correspond-
ing type (b) k-dense corridor. Throughout the search,
we keep track of the widest corridor found so far and
update this information whenever a wider corridor is
found.

427

3 Widest empty corridors

3.1 Widest empty corridor through a
planar point-set

We give an O(n?)-time and O(n)-space algorithm to
compute a widest empty corridor C*. Except for mi-
nor differences, the algorithm is analogous to the one
given by Houle and Maciel [HM88]. We present it
here for completeness since our results in Sections 3.2,
3.3, and 4 use some of the ideas.

Let C be an empty corridor. Since k = 0, both
endpoints of F(C) lie on the boundary of the same
face, f, of A. Thus the search for C* can be restricted
to the faces of A.

We construct the arrangement A in O(n?) time and
space using the algorithm of [CGL85]. To compute
the empty type (a) corridors, C, corresponding to
f, we decompose f’s boundary into a lower chain,
L, and an upper chain, U, whose endpoints are the
leftmost and rightmost vertices of f. For each interior
vertex on U, we find the edge of L vertically below
it in O(|f[) total time, as follows: For the leftmost
interior vertex of U, we scan L from left to right and -
stop as soon as we find an edge vertically below the
vertex. By convexity, for each subsequent interior
vertex on U, the scan of L can be resumed from its
previous position on L. Similarly, we can compute
for each interior vertex of L the first edge vertically
above it. The total time is O(|L| + |U|) = O(|f]).

We determine the empty type (b) corridors corre-
sponding to f as follows: Consider the sorted list of
abscissas of the vertices of f and let I be some open
interval defined by consecutive abscissas in the list.
With I we can associate two lines, ¢; and £;, where
wlog ¢; supports an edge of U and ¢; supports an
edge of L, such that for any abscissa in I, ¢ is the
first line vertically above ¢; and ¢; is the first line ver-
tically below £;. Thus we only need to check whether
—1/z(v;j) € I, which can be done in constant time
given 4; and ¢;.

To determine the lines associated with each inter-
val, we merge L’s and U’s vertices (which, by con-
vexity, are in sorted z-order) into a single sorted
list, v1,v2,...,9 7|, Where v; is the leftmost vertex
of f. Assume that v; is the intersection of lines 4
and £,, where £, is above £, to the immediate right
of v;. Then the lines associated with the interval
(z(v1), z(v2)) are £, and £,. Now v, must be the in-
tersection of one of the lines ¢, and £,, say £,, with
a new line ¢.. Thus £, and £, are associated with
(2(v2),z(vs)). And so on. The total time is clearly

428

o(lf1).

Thus, the total time is O(3" ;¢ 4 | f]) = O(n?). The
space is O(n?) as all of A is stored.

To reduce the space to O(n), we compute only only
the portions of A that are relevant at any given time.
For this, we use the topological sweep paradigm of
Edelsbrunner and Guibas [EG89], which allows us to
visit the vertices, edges, and faces of an arrangement
in a systematic way in O(n?) time and O(n) space.
Moreover, as soon as a face f is reached in the sweep,
its vertices and edges can be extracted in O(]f|) time
from the supporting data structures. Thus, we can
process f in O(|f|) = O(n) time and space and then
reuse the space for the next face.

Theorem 3.1 ([HMS88]) A widest empty corridor
through a set of n points in the plane can be computed
in O(n?) time and O(n) space. O

3.2 Dynamic maintenance of a widest
empty corridor

We now describe how the widest empty corridor
through S can be updated online as points are in-
serted into or deleted from S. Our approach is based
on the following properties:

1. When a point p is inserted into S, an empty
corridor C is destroyed only if the endpoints of
F(C) lie on the boundary of a face of A that is
intersected by F(p). Moreover, if A’ is the ar-
rangement after the insertion of F(p), then the
search for new empty corridors can be restricted
to those faces of A’ to which F(p) contributes an
edge. Symmetrically for deletions.

2. In an arrangement of n lines, the sum of the
sizes of the faces intersected by any line is O(n)
[CGL85]. This implies that only O(n) empty
corridors are affected by an update.

In addition to .4, we also maintain a heap, H,
which stores all the empty corridors of S. For each
empty corridor of S, with bounding lines £ and ¢
and width w, there is an entry in H consisting of £,
¢’, and w. H is organized as a max-heap on the w’s;
thus the widest empty corridor can be retrieved in
O(1) time following an update.

With each vertex v;; of A can be associated up to
three empty corridors, namely: (i) one for which v;; is
the lower endpoint of the dual vertical line segment,
(ii) one for which v;; is the upper endpoint, and (iii)
one for which the endpoints of the dual line segment

at abscissa —1/z(v;;) lie on the lines £; and ¢;. We
store with v;; a pointer to each of the three associated
corridors in H. With this setup, if one of the corri-
dors associated with v;; is to be deleted, its position
in H can be determined in O(1) time. Since, H has
size O(n?), it supports insertions and arbitrary dele-
tions (given the position of the entry to be deleted)
in O(logn) time.

Consider the insertion of a point p. Starting with,
say, the leftmost intersection of F(p) with A, we suc-
cessively traverse the boundaries of the faces inter-
sected by F(p) and update the representation for .4
by adding the edges and vertices induced by the inter-
section of F(p) with A. This takes O(n) time because
of property 2 above. During the traversal, we also do
the following: Suppose that F(p) splits a face f into
faces fi and f,. We walk around the boundary of f,
find (as in Section 3.1) the corridors whose duals have
both their endpoints on the boundary of f, and delete
from H those corridors for which one endpoint of the
dual is on the boundary of f; and the other endpoint
is on the boundary of f,. We then find the corridors
whose duals have both their endpoints on the bound-
ary of f; (and similarly for f,) and insert these into
H. This takes O(|f|logn) time, which when summed
up over all faces f intersected by F(p) yields a time
bound of O(nlogn), by property 2 above. Deletion
of a point p is essentially the reverse.

Theorem 3.2 A widest empty corridor through a
planar point-set S can be maintained dynamically,
under online insertions and deletions in S, in
O(nlogn) time and O(n?) space, where n is the cur-
rent size of S. O '

3.3 Widest empty corridor through
polygonal obstacles

We show how to compute a widest empty corridor
through a set, P, of (not necessarily simple) polyg-
onal obstacles in the plane in O(n?) time and O(n)
space, where n now is the total number of edges in the
obstacles. Formally, a corridor, C, through P is the
open region of the plane that is enclosed by the two
parallel straight lines that intersect the convex hull of
the vertices of the polygons in P and such that the re-
gion does not intersect any polygon in P. (Note that
for a given P it is possible that no empty corridor ex-
ists.) It is easy to prove that if C* is a widest empty
corridor through P, with bounding lines £ and £, then
one of the conditions (a) or (b) of Theorem 2.1 must

hold, where p;, p;, and p; are now vertices of poly-
gons in P,

Let T be the set of edges of the polygons. Under F,
a segment ¢ € T, with endpoints p and p’, is mapped
to the doublewedge, W (t), formed by F(p) and F(p')
and not containing the vertical line through the point
F(p)NF(p'). Furthermore, a line £ intersects ¢ if and
only if F(£) lies in W (2).

Let A be the arrangement of the lines bounding the
doublewedges W (t) for t € T. It is well-known that
lines ¢; and £, intersect the same subset of segments
of T (and hence the same number of segments of T) if
and only if F(¢;) and F(£2) lie in the same face, f, of
A. Let count(f) denote the number of line segments
of T intersected by any line whose dual point falls
in f. Of particular interest to us are the count-zero
faces of A, i.e., faces f such that count(f) = 0, since
an open vertical line segment whose endpoints lie on
the boundary of a count-zero face is the dual of a
corridor that intersects no line segment in T (and
hence no polygon in P).

Thus, if C is an empty corridor through P, then
both endpoints of F(C) lie on the boundary of the
same count-zero face of A. To find C*, we use the
topological-sweep-based algorithm described in Sec-
tion 3.1, but perform corridor computations only for
the count-zero faces of A. In order to identify the
count-zero faces of A during the sweep, we use a tech-
nique of Edelsbrunner and Guibas [EG89, page 182],
who show how to compute count(f) in O(1) time for
each face f of A when it is first encountered in the
sweep.

Theorem 3.3 A widest empty corridor through a set
of (not necessarily simple) polygonal obstacles in the
plane can be computed in O(n?) time and O(n) space,
where n is the total number of edges of the poly-
gons. O

4 Computing a widest k-dense
corridor for £ > 0

We show how to compute a widest k-dense corri-
dor, in O(kn?) time and O(kn?) space, where k > 0.
Thus, when k = o(log n), this algorithm is faster than
the one mentioned as Result 1 in the Introduction
(and omitted here due to page limitations); however,
it uses more space. .

As in Section 3.1, we process A face-by-face, deter-
mining for each vertex on the upper chain of a face
the (k + 1)st line, if any, that is vertically below it.

429

Similarly, in a second face-by-face pass, we determine
the (k + 1)st line vertically above each vertex. In a
third pass, we determine type (b) corridors.

However, unlike Section 3.1, the (k + 1)st lines be-
low and above a vertex do not lie on faces containing
the vertex but are instead several faces away, and
so the processing involves cutting across face bound-
aries. To do this efficiently and systematically, we
process faces in a certain order. Towards this end, fol-
lowing [EGS86], we define a total order on the faces,
as follows:

For distinct faces f and g of 4, say that f > ¢ if
there is a vertical line that intersects both f and g, f
above g. It is well-known [EGS86] that the relation
> is acyclic. Consider the subset > of >> consisting
of those pairs (f, g) that share an edge. We can com-
pute > in O(n?) time by traversing the boundary of
each face f and determining for each edge e of f the
other face in A that shares e with f. The relation
> has cardinality O(n?) and, moreover, its transitive
closure coincides with that of >>. The desired total
order is obtained by doing a topological sort on >,
which takes O(n?) time.

Let fi, f2,...,fs be the faces of .4 under this to-
tal order, where fi (resp. f,) is the topmost (resp.
bottommost) face of 4. With the exception of these
two faces, each f; can be decomposed into a lower
chain L; and an upper chain U;; faces f; and f, con-
sist of only a lower chain L; and an upper chain U,
respectively.

The first two passes

We begin with face f, and, as in Section 3.1, proceed
to map each arrangement vertex on U, to a point ver-
tically below it on L,. In general, let f; be the face
to be processed next. The set, P;, of points on U;
that must be resolved (i.e., mapped to points verti-
cally below on L;) consists of (i) arrangement vertices
lying on U; and (ii) downward projections of arrange-
ment vertices lying on upper chains U;, where j < i.
With each such point p € P;, we associate a pointer,
vert(p), to the arrangement vertex that projects to p
and a level number, level(p), where level(p) = h im-
plies that vert(p) has been projected vertically down-
wards h times, where 0 < h < k+ 1. In particu-
lar, if p is an arrangement vertex lying on U;, then
vert(p) = p and level(p) = 0.

To resolve P;, we traverse the boundary of U; and
the boundary of L; simultaneously and for each point
p € P; we do the following: If level(p) = k + 1 then
the open vertical line segment with endpoints p and

430

vert(p) intersects k lines and thus is the dual of a
type (a) corridor. We compute this corridor and then
discard p. If, however, level(p) < k+1, then we reset
p to the point vertically below it on L; and increment
level(p).

The processing of faces in the first pass terminates
once f,-1 has been processed. To calculate the (k +
1)st line vertically above each arrangement vertex, we
perform a symmetric second pass, processing faces
in the reverse order. In addition, we determine for
each vertex of the arrangement the kth line vertically
above it. The reason for this will become clear in the
sequel.

The third pass

We perform a face-by-face pass, from f to f,, which
simulates the first pass but, in addition, also does

the following: Let f; be the current face and let @; =

P1,P2,- - -,Pq be the left—to-right sequence of points
consisting of the arrangement vertices on L; and of
the points that have been projected down from Uj,
where p; is the leftmost arrangement vertex on L;.
Let p; be the intersection of lines £, and £, where £,
supports an edge of U; and £, supports an edge of L;.
Let £, be the kth line above p;. Now, for any abscissa
that is infinitesimally to the right of p;, there are k
lines between ¢, and ¢,. This is because at z(p1),
there are k — 1 lines between p; and £, and just to
" the right of p1, £; contributes one to this count.

Let j > 1 be the smallest index such that vert(p;)
is the intersection of one of £, and ., say £, with
a new line £,,. Then, for any abscissa in the interval
(z(p1), z(pj)), there are k lines between £, and £;.
Let vy, be the arrangement vertex defined by the in-
tersection of £, and £;. If —1/z(vy;) € (z(p1), z(p;)),
then an empty type (b) corridor has been found.
Again, for any abscissa that is infinitesimally to the
right of p;, there are k lines between £, and £, and
so we proceed to determine, as before, the interval
(z(pj), z(p;*)) for which this property holds. The pro-
cessing of f; in the third pass terminates once p, is
reached.

In each pass, the time to scan a face f; is O(|fi|),
which sums up to O(n?) for all faces. The time to re-
solve a vertex is O(k), which is O(kn?) for all vertices.
The space is clearly O(kn?).

Theorem 4.1 A widest k-dense corridor through a
set of n points in the plane can be computed in O(kn?)
time and O(kn?) space, where 0 <k <n-2. O

5 Computing a widest (n — 1)-
dense closed corridor effi-
ciently

Since any (n — 1)-dense closed corridor through S
excludes exactly one point of S, the excluded point
must be a vertex of the convex hull, CH(S), of S. Let
P0,P1,- - -, Ph—1 be the vertices of CH(S). One strat-
egy is to delete each hull vertex p; in turn and com-
pute a widest (n — 1)-dense closed corridor through
Si = S —{pi}, i.e., a widest closed corridor that in-
cludes all the points of S;. As observed in [CD90],
such a corridor is determined by a diametral pair of
CH(S:), which can be computed in time linear in the
size of CH(S;) [PS88] once CH(S;) is available.

Computing CH(S;) from scratch for each hull
vertex p; deleted will lead to an overall time of
O(n?logn) in the worst case. Fortunately, there is
enough coherence in the successively considered col-
lections of points that a substantially more efficient
algorithm can be developed.

Our algorithm is based on the notion of convex
layers [PS88]. For our purposes, the first two layers,
Ly = CH(S) and L; = CH(S — Lo), sufficc. When
pi is deleted, CH(S;) can be obtained by simply at-
taching between p;—; and p;41 a suitable subchain,
H(p;), of L. (Throughout, indices are taken mod-
ulo h.) H(p;) is defined as follows: If the line seg-
ment P;—1Pi+1 does not intersect L;, then H(p;) is
simply this line segment. Otherwise, the first (resp.
last) edge of H(p;) is the line segment p;_;p’ (resp.
Pi+1pP") that is tangential to L; at the vertex p’ (resp.
p"") of Ly. Of the two possible such tangential edges
from p;_1 (resp. pi41) to Ly, we take the one that
makes the smaller acute angle with the edge 7;—1p;
(resp. Pi71Pi). See FIGURE 4 for an example.

For future use, we now establish that, for ¢ # j,
H(p;) and H(p;) are edge-disjoint. Clearly, it suf-
fices to show that H(p;) and H(pi41) have this prop-
erty. Referring to FIGURE 4, note that p; must lie in
the region r facing bay & for otherwise Lo intersects
L;. Thus the tangent from p; to L; (the one which
contains the first clockwise edge of H(p;4+1)) cannot
meet L; at any interior vertex of H(p;) N L;. This
establishes the claim.

For any vertex p; € CH(S), a diametral pair of
CH(S;) is one of the antipodal pairs of vertices of
CH(S;), i.e., a pair of vertices through which par-
allel lines supporting CH(S;) can be drawn [PS88].
Clearly, the (n — 1)-dense closed corridors through S
that exclude p; correspond to those antipodal pairs

of CH(S;) that are not also antipodal pairs of CH(S).
Thus, each (n — 1)-dense closed corridor through S
can be associated with an antipodal pair of some
CH(S:),0<i<h-1.

Given any planar point-set S, for each edge e €
CH(S') there is a vertex a(e) of CH(S'), such that’
the line through a(e) and parallel to e does not in-
tersect the interior of CH(S'). Thus, if ¢/ and e” are
clockwise consecutive edges on CH(S’), then the ver-
tices clockwise from a(e’) to a(e”) are exactly those
forming antipodal pairs with the vertex shared by e’
and €”.

Thus each (n — 1)-dense closed corridor through
S can be determined by generating the edge-vertex
pairs (e, a(e)) of all CH(S;), 0 < i < h—1. Moreover,
for each CH(S;), we need only consider edges e that
belong to H(p;). For each such e, a(e) is a vertex of
CH(S).

The preceding discussion suggests a rotating caliper
algorithm [Tou83, PS88]. Let e* denote the edge for
which o(e*) is currently being sought. Initializing
e* as the first clockwise edge of H(po), we deter-
mine a(e*). Next we let e* march clockwise along
H(po) while a(e*) marches clockwise along Lo. In
the process, we find all antipodal pairs of CH(So)
and thus determine the widest (n — 1)-dense closed
corridors through S that exclude po. This phase ter-
minates when we reach p;. ‘We then start with the
first clockwise edge of H(p;) and repeat the process
for H(p1); and so on until we complete the processing
of H (p)...l).

Consider the running time. Lo and L; can be com-
puted in O(nlogn) time. Also, H(p;) can be found
in O(logn) time, 0 < i < h — 1. The caliper always
moves monotonically clockwise since, as shown ear-
lier, H(p;) and H(p;) have no common edges. For
each edge e, the cost of determining a(e) can be
charged as O(1) per vertex of CH(S) scanned. More-
over, each such vertex is charged only O(1) times,
since, as can be seen from FIGURE 4, for any i the
tangent from p; to L; (the one which contains the
first clockwise edge of H(pit1)) turns clockwise with
" respect to the tangent t;4, (which contains the last
clockwise edge of H(p;)). Thus the rotating caliper
stage runs in O(n) time. The space used is clearly
O(n).

Theorem 5.1 A widest (n ~ 1)-dense closed corri-
dor through a set S of n points in the plane can be
computed in O(nlogn) time and O(n) space. O

431

References

[CD90] S. Chattopadhyay and P. Das. The k-dense
corridor problems. Patiern Recognition Let-
ters, 11:463-469, 1990.

[CGL85] B.M. Chazelle, L.J. Guibas, and D.T. Lee.
The power of geometric duality. BIT,
25:76-90, 1985.

[EG89] H. Edelsbrunner and L. Guibas. Topolog-
ically sweeping an arrangement. Journal
of Computer and System Sciences, 38:165—

194, 1989.

H. Edelsbrunner, L.J. Guibas, and J. Stolfi.
Optimal point location in a monotone sub-
division. SIAM Journal on Computing,
15:317-340, 1986.

M. Houle and A. Maciel. Finding the widest
empty corridor through a set of points.
In G.T. Toussaint, editor, Snapshots of
computational and discrete geometry, pages
201-213. TR SOCS-88.11, Dept. of Com-
puter Science, McGill University, Montreal,
Canada, 1988, - .

R. Janardan and F.P. Preparata. Widest-
corridor problems. Technical Report TR~
93-17, Dept. of Computer Science, Univer-
sity of Minnesota, 1993, Submitted.

F.P. Preparata and M.I. Shamos. Com-
putational Geomelry - An Introduction.
Springer—Verlag, 1988.

[EGSS6]

tHMss]

[3P93]

[PS88]

[Tou83] G.T. Toussaint. Solving geometric prob-
lems with the ‘rotating calipers’. In Pro-
ceedings of IEEE MELECON 83, 1983.

Figure 1: Mﬂ(p;)eonﬁchollbeedsueotbmnyza. Here .y and
tm'ue.xecpecﬁvdy,tbeungmuﬁommd and piyy to Ly. Bay b is the
mnb:d:dbtbeedgaqg.qndtbeuw&d—[ﬁngwm

-1 +1. Region r is region bounded by the downward-facing
wedge formed by t;.; and tiy,. by :

