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Abstract

We consider the problem of computing the points
that can be in contact with a robotic welding
head when the welding head must have its tip at
a weld site and must be within a specified range
of the optimal weld angle. We show that these
points form a solid of revolution. If the welding
head is represented as a polygon with n vertices,
we give an O(n?logn)-time algorithm to com-
pute a two-dimensional representation of the en-
tire solid; we also give an O(nlogn)-time algo-
rithm to compute a two-dimensional representa-
tion of the outer surface of the solid. This repre-
sentation permits the use of existing computer-
aided design tools for collision avoidance.

1 Introduction

One of the enjoyable aspects of computational
geometry is how an understanding of the geom-
etry of a problem can lead to simple and elegant
‘solutions. OQur case in point identifies a repre-
sentation for the reachable region of a robotic
welding head, the set of all points that can be
in contact with the head. While the reachable
region is a three-dimensional volume, character-
istics of the head’s motions permit a compact
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two-dimensional representation.

We have a robotic welding head, which has a
welding tip and an axis £ that passes through the
tip. The overall problem is to track a weld seam
with the welding tip so that the axis £ is always
within some angle § of an optimal weld angle
that has been specified by some expert welder.

We attach a coordinate frame to the seam with
the origin o at a point weld site so that the weld-
ing head axis coincides with the z-axis at the
optimal angle for welding site o. As figure 1 il-
lustrates, the welding head has two types of mo-
tion when the tip is at o: It can rotate freely
about its axis £, and £ can tilt within an angle
of § from the z2-axis. A subproblem that arises
is to determine the (presumably few) features of
the (presumably large) workspace that must be
avoided in tracking the seam. Given a represen-
tation of the reachable region of the head, this
can by computed by commercial CAD packages
using swept-volume and intersection operations.

In this paper we abstract the welding head
problem to computing the reachable region of a
connected polygon P with n vertices. We prove
in section 2 that the reachable region is a solid
of revolution. Thus, rather than explicitly con-
structing the three-dimensional region, we cre-
ate a two-dimensional cross-section, bounded by
line segments and circular arcs. Our algorithm,
described in section 3, runs in O(n?logn) time;
the cross-section computed may have quadratic
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complexity due to ringlike holes inside the solid.
The outer surface of the reachable region has at
most O(n) complexity; we can compute its cross-
section in O(nlogn) time.

2 Geometry of the Welder Problem

N

] ... oo Po

Flgure 1: P rotates about £ while £ tilts
about the origin o.

We abstract the problem as follows.

The welder problem: Let P be a connected
polygon with n vertices in a plane 7, let £ be a
line in 7, and let o be a point on £. Find a two-
dimensional representation for the volume swept
by the interior of P as P is rotated freely about
£ and £ is tilted by at most § radians about the
point o (see figure 1.)

As our first task, we show that the welder
~ problem defines a solid of revolution. A two-
dimensional cross-section completely describes
the entire volume, so the welder problem is fea-
sible. We then characterise the cross-section as
our second task, which leads us toward an effi-
cient computation algorithm.

Lemma 1 The volume swept by the interior of
a plane connected polygon P as P rotates about
a co-planar line £ and ¢ tilts by angle at most §
is a solid of revolution.

Proof: We prove that every point within the
swept volume lies on a circle that is centred
on £, is perpendicular to £, and lies completely
within the volume. Since all the motions in-
volve rotations about an origin o, every point
simply moves on the surface of a sphere, so we

show that any arbitrary point inside the vol-
ume can move to a plane containing ¢ that
makes any angle relative to # with a mo-
tion perpendicular to £, and remain inside the
swept volume.

Let p be an arbitrary point inside the swept
volume. The point p corresponds to some
point inside the polygon P after P and £ are
tilted by at most § radians and then P is ar-
bitrarily rotated by % radians about the tilted
£. The tilt motion of £ divides into two inde-
pendent components: an angle ¢ with respect
to the untilted £, and an angle 6 between the
plane 7 and the plane containing the untilted
and the tilted copies of £. Each of v, ¢ and
0 are positive angles; angles 6 and ¢ are un-
constrained while angle ¢ is no greater than
é.

If we use a rectangular coordinate system
centred at o, with the z-axis along the line £,
and if the initial position of the point p rela-
tive to this coordinate system, before the %,
¢, and @ rotations, was the point (a, b, c), then
the projection of p onto the line £ has coor-
dinates (0,0, (asiny + b cos ) sin ¢ + c cos @).
Since the projection along £ is independent of
the rotation angle §, any motion of p caused
by varying 6, while ¢ and ¢ are fixed, moves
p in a plane perpendicular to £. The welder
problem does not constrain 8, so the point p
can traverse a circle centred about £ and per-
pendicular to ¢ without violating any of the
volume constraints. s

Lemma 1 proves the existence of a two-
dimensional representation for the volume in the
welder problem. A cross-section of the volume,
which contains the line £, completely describes
the volume.

A direct approach for obtaining the two-
dimensional cross-section computes the entire
volume and then extracts the desired profile.



Each possible polygon motion is treated sepa-
rately; first, we revolve the polygon P about the
line £ to produce a volume V relative to £, then
we take the union of the volume V as the ref-
erence line £ is positioned at every possible tilt
angle and tilted in every possible direction. The
resulting union contains exactly all possible po-
sitions for the interior of P through all motion
combinations. Since we know the reachable re-
gion is a solid of revolution and £ is its axis of ro-
tation, we can compute the cross-section through
£ and obtain a two-dimensional answer.

The welder problem’s geometry allows us to
compute the two-dimensional cross-section with-
out calculating in the dimension of the reachable
region itself. Lemma 2 proves that any point of
the reachable region in the plane =, attainable
by P in the welder problem, is also attainable
by a single and permissible tilt of P and £ within
the plane 7 alone. Let Py denote the polygon P
tilted about the origin by the angle @ and let v
denote the image of vertex v € P on Py. Then
lemma 2 and the observation that any tilt be-
tween P,s and P_; is a valid motion for the poly-
gon describe the two-dimensional cross-section of
the volume as the union of P’ = Upg[—s,+5 Fs
and its reflection in the line £.

Figure 2: Triangle on the surface of a sphere
with subtending angles ¢, 7, and .

Lemma 2 Let polygon P in plane 7 be defined
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as in the welder problem. If p € P maps to the
point p' € 7 after a tilt of £ by ¢ radians in
any direction followed by rotation of P about the
tilted £ then point p can be mapped to p' by a tilt
of L in ™ of ¢ or fewer radians.

Proof: We show that the angle between p and
p' is less than ¢ in absolute value by using the
triangle inequality on the surface of the sphere
containing p and p’.

First, we can assume that points p and p’
lie in the same half-plane of 7 relative to ¢
since the polygon P can be rotated about £ to_
satisfy this condition before we start.

Let 7 be the measure of the angle in 7 be-
tween £ and the line from o to p. Let 7 be the
measure of the angle in = between £ and the
line from the origin o to p’ (see figure 2).

The angle between points p and p’ in the
plane 7 has measure |7 — 9|. The points p
and p’ are equidistant from the centre of ro-
tation and therefore lie on the surface of a
common sphere centred at o. The triangle on
the surface of this sphere, with vertices p, p/,
and the intersection of £ and the sphere, has
edge lengths proportional to 7, ¥, and ¢ as il-
lustrated in figure 2. The triangle inequality,
when applied twice to this triangle, yields

n+¢

Y <
< %+¢

n

We rewrite the inequalities as

-¢
n—1v

n—19
¢

IAIN

to imply [n—9|< ¢.»

The geometry of the welder problem reduces
the two-dimensional representation problem to
creating the union of the polygon P’ and its re-
flection in £.
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3 Computing the polygon generating
the reachable region for the
welding head

In this section we look at the algorithmic prob-
lems of computing the two-dimensional repre-
sentations of the reachable region for a welding
head that is given as a polygon P with n ver-
tices. We compute the polygon generating the
reachable region in O(n%logn) time and O(n?)
space. The space is optimal in the worst case—
the polygon generating the reachable region can
have quadratic complexity because the reachable
region can have many ring-shaped cavities. For
collision detection, however, these cavities are
not interesting. Thus, we also compute the poly-
gon generating the outer boundary of the reach-
able region in O(nlogn) time and linear space.

We begin by describing how to compute the
area swept by a connected plane polygon @, with
m vertices, as @ tilts in the plane by angles in
the range [-§,+6]. That is, how to compute
Q" = Use[-5,+6) Qo- By introducing at most m
vertices, we can ensure that each edge of @ has
a vertex as the closest point to the origin; along
an edge the distance from the origin increases or
decreases monotonically. Because distance from
the origin is monotone along an edge of @, we
can say unambiguously that an edge e is clock-
wise (cw) or counterclockwise (ccw) depending
on whether e as viewed from the origin is cw or
- ccw of the interior of Q.

Lemma 3 For any connected plane polygon Q,
the boundary of Q' = Upe[—s,45 Qo consists of
cw edges from Q_s, ccw edges from Q4s, and
arcs of circles centred at the origin generated by
vertices of @ that are local minima or mazima
with respect to distance from the origin to the
boundary of Q. At most one portion of each arc
appears on Q'.

Proof: Lemma 2 implies that the boundary of

Q' consists of straight edges and circular arcs.

Since tilting about the origin is distance pre-
serving, our classification of edges as cw and
ccw relative to @ applies to the edges of Q.

Suppose €’ is a cw edge of Q. The angle
between ¢’ and its corresponding edge e in Q
is 8, so €' belongs to either Q_s or Q45 and
no other tilted polygon. Since all the points
of Q45 lie ccw to Q and, by definition, e’ lies
cw to @, ¢’ must belong to @_s5. A parallel ar-
gument shows that ever ccw edge of Q' comes
from Q4s.

Let v be a vertex of Q. If v is not a lo-
cal minimum or maximum with respect to dis-
tance from the origin, then tilting Q about the
origin sweeps a circular band about the path
traced by v, hiding v’s arc from the boundary
of Q'. Otherwise, let 4 be the arc from v_s to
v4+s. At most one portion of ¥ can appear on
the boundary of @Q': If v intersects a cw seg-
ment of Q' then it has encountered a segment
of Q_s; because v subtends an angle of 24, it
cannot reappear on Q' ccw of this intersection.
A similar analysis says that 4 cannot appear
cw of its first intersection with Q4s. =

The observations of lemma 3 suggest an al-
gorithm to compute the arcs of Q’. We sweep
the polygon @ with an expanding circle centred
at the origin. We maintain ordered lists of the
cw segments of @_s and of the ccw segments of
Q+s that intersect the circle. When the sweep
encounters a vertex v € @, we update the appro-
priate list(s). If v is a local minimum or maxi-
mum of distance from the origin (equivalently,
if we must update both lists) then we locate the
ccw neighbor of v_s among the cw segments, call-
ing v4+s the ccw neighbor if there is none. Simi-
larly, we locate the cw neighbor of v4+s among the
ccw segments, calling v_s the neighbor if there
is none. If there is a portion of the arc clock-
wise from the ccw neighbor to the cw neighbor,
then we introduce new vertices where the arc in-



tersects the segments and set pointers between
them.

Now, we must put the cw segments of @_s and
the ccw segments of @45 together with the arcs.
Perhaps the simplest way would be to adapt a
line-sweep algorithm for computing line segment
intersections, such as Bently-Ottman [1], to a
circle-sweep. This, however, could have a run-
ning time that is quadratic in m because of in-
ternal intersections. Instead, we preprocess the
components of the exteriors of @_s and Q45 for
ray shooting [3, 4, 2]. We also mark vertices that
will appear on the final output: perform a circle-
sweep of @ and mark vertices of cw segments
(including those that we have introduced) where
the angle to the cw neighbor is greater than 26.

From a marked vertex we walk around a
boundary component of @’ by alternately walk-
ing on @5 and Q45 as follows: Unmark the cur-
rent vertex. If the next edge (keeping the inte-
rior of @’ to the left) is an arc, then follow the
pointer to the vertex on the other polygon. If
the next edge is a segment e, then shoot along e
in the other polygon’s ray shooting structure to
determine if e hits the other polygon. If e does
not, then advance to the other endpoint of e.
Otherwise, introduce the intersection point and
make it the current vertex on the other polygon.
Repeat until there are no marked vertices.

An intersection found by ray shooting is the
intersection of a cw and a ccw segment—it is,
therefore, a local minimum or maximum of its
boundary component. Because every boundary
component of @’ has at least three vertices, every
boundary component has at least one marked
vertex and is output by the algorithm.

The circle-sweeps handle a linear number of
events; they can be implemented to run in
O(mlogm) time using balanced trees. Prepro-
cessing and ray-shooting from the O(m) vertices
can be performed in the same time. We summa-
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rize with the following theorem.

Theorem 4 Given a connected plane polygon Q
with m vertices, we can compute the boundary
of Q" = Usel-5,451 Qo in O(mlogm) time and
O(m) space. ~

Figure 3: A polygon and its reflection can have
quadratic complexity

Section 2 characterises the polygon generating
the reachable region for a welding head repre-
sented as an n-gon P. We can compute it by
computing the polygon @ that is the union of
P and P’s reflection across £ and applying theo-
rem 4.

Corollary 5 One can compute the polygon gen-

erating the reachable region for a welding head P

in O(n?logn) time and O(n?) space.
Proof: Compute the union of P and P’s re-
flection by a line-sweep algorithm [1]. This
takes O(n?logn) time and results in a con-
nected polygon Q with O(n?) vertices. Apply
the algorithm of theorem 4 to finish the com-
putation. =

As figure 3 shows, the description of the poly-
gon generating the reachable region may have
quadratic complexity, even with little or no tilt-
ing. In fact, it is the reflection and not the
tilting that causes the increase in complexity—
Theorem 4 implies that the tilt of P itself has
O(n) complexity. (This can also be seen by
noticing that the n tilted segments form a family
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of pseudodisks—sets whose boundaries have two
intersections—and applying a result of Kedem et
al. [5].)

The reachable region or solid of revolution gen-
erated by such a polygon contains many ringlike
holes, which might as well be filled in if the goal
is to perform collision detection with obstacles
that are not freely floating in space. It is suffi-
cient to compute the contour, the polygon gener-
ating the outer boundary of the reachable region,
which has only linear complexity.

Corollary 6 One can compute the contour of
P, the polygon generating the outer boundary of
the reachable region, in O(nlogn) time and lin-
ear space.

Proof: First, compute the contour of the
union of P and P’s reflection about the line
£. For this we process the exteriors of P and
its reflection for ray-shooting. Then we walk
around their union starting from their right-
most point in the manner of the algorithm for
theorem 4. In O(nlogn) time, this produces
a polygon @ with O(n) complexity. Apply-
ing theorem 4 (and generating only the outer
boundary component) completes the compu-
tation. m

4 Future Work

Our work abstracts a welding head as its polyg-
onal profile. A true representation of the reach-
able region for the head must also account for
depth of the head, information available through
head descriptions as a union of polyhedra (com-
mon in computer graphics) or as front, side, and
plan views of the head (from traditional draft-
ing). With depth information and the same mo-
tion constraints, the reachable region remains a
solid of revolution and a two-dimensional rep-
resentation exists. However, a new characteri-
sation of the reachable region’s outer surface as

well as new algorithms to outline the outer sur-
face must be developed to include the depth fac-
tor.

Restricted forms of the welder problem also
provide a space for further analysis. If the poly-
gon cannot be rotated completely about the line
£, if the polygon cannot be tilted in an arbitrary
direction, or if the polygon cannot be tilted in
each direction uniformly then we no longer ob-
tain a solid of revolution as the reachable space.
The loss of symmetry leaves the question of
whether or not a two-dimensional representation
exists for the reachable space and, if it exists,
how complex that representation is and how fast
can we compute the representation?
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