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How to Look Around a Corner
Extended Abstract

Christian Icking*

Abstract

We consider a problem of motion planning under
uncertainty. A robot can navigate freely in the
plane and, using a built-in vision system, can de-
termine distances and angles. Initially, the robot
stands at a point close to a an edge of a polygonal
obstacle (e. g. a wall of a huge building) and faces
a corner at distance 1 from its position. The other
wall which forms the -corner is invisible from the
starting position and the robot does not know the
angle of the corner. The task of the robot is to
move on a short path to a point where that wall
becomes visible.

We show that there is a competitive strategy
which guarantees that, for any possible value of
the angle, the length of the path the robot walks
until it can look around the corner is bounded by
the length of the shortest path to do so, times the
constant ¢ & 1.21. Furthermore, we prove that our
strategy is optimal in that no smaller competitive
factor than ¢ can be achieved. We give a simple
formula for the robot to find the optimal path.

Key words. Motion planning, navigation, com-
petitive algorithms, uncertainty, robotics.

1 Introductioh

Algorithmic motion-planning in robotics is a clas-
sical field in computational geometry, see Schwartz
and Sharir [10], Schwartz and Yap [11], or Mitchell
[7] for surveys. .

In the majority of the existing work it is assumed
that the environment in which the system moves is
known in advance. In real life, this assumption is
not always granted. Autonomous vehicles should
be able to find their ways through, or learn, un-
- known terrain as efficently as possible. This means
that the task must be accomplished correctly, but
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as little as possible of resources like time or energy
should be used.

In the last years, several researchers indepen-
dently began to apply to geometric planning prob-
lems the concept of competitive algorithms intro-
duced by Sleator and Tarjan [12]. Here one com-
pares what can be achieved with incomplete in-
formation against what could be achieved if full
information was available. More precisely, S is a
competitive strategy for problem class P if there ex-
ists a constant ¢ such that, for each instance P of
P, the cost of applying S to P does not exceed
c times the cost of solving P in an optimal way,
given full information. The minimum c satisfying
this condition is called the competitive factor of S.

Among other work, competitive geometric algo-
rithms have been developed by Papadimitriou and
Yanakakis [9], Blum, Raghhavan, and Schieber [1],
and Eades, Lin, and Wormald [4] for path plan-
ning in the presence of obstacles in the plane, by
Deng, Kameda, and Papadimitriou [3] for learning
the interior of a polygon that may have a bounded
number of holes, and by Klein [6] for finding a path
in the interior of special simple polygons called
streets.

In Section 2 we define and characterize competi-
tive strategies for the corner problem. In Section 3
we solve the optimality problem. Our approach
leads to a differential equation of which a closed-
form solution is apparently not provided by the
theory, but we can show that the required solution
must exist.

From the bare existence, and from the functional
properties of the differential equation, we are able
to derive that the solution of the above differential
equation leads to a competitive strategy whose fac-
tor equals 1.21218.. ., and that no better strategy
exists. A main step is in proving that the curve
implied by this strategy is convex.

While the analysis of our strategy and the
proof for optimality are rather complicated and
use means from the theory of ordinary differen-
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tial equations, the resulting strategy is surprisingly
simple.

We present a generalization of the problem in
Section 4.

2 Preliminaries

In this paper we study an elementary problem re-
lated to learning an unknown environment. Sup-
pose that two halflines meet at the origin O, as
shown in Figure 1. The shaded wedge formed by
the halflines is opaque; it could be the corner of a
huge, non-rectangular building. Now assume that
on one of the halflines a mobile robot is located at
point W, outside the wedge, that is equipped with
an on-board vision system facing O. Its task is to
inspect the other halfline which is invisible from W
(but for its endpoint, O).
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Figure 1: The shortest pathA from W to P(y).

Given full information about the angle of the
corner, the robot should obviously move along the
shortest path to P(¢), the prolongation of the in-
visible halfline. Here, ¢ € [0, 7] denotes the angle
between the invisible halfline and the prolongation
of the visible one.

If the value of ¢ lies between 0° and 90° then the
shortest path from W to P(¢p) is the perpendicular;
see Figure 1 (i). If ¢ is bigger than 90° then the
point of P(¢) closest to W is the corner itself; see

(ii). ~

By a(y) we denote the distance between W and
P(p), we have

a(p) = { Sh;(p

Note that a is continuously differentiable.

But the robot does not know the actual value
of ¢. So, how should it walk? Obviously, walk-
ing straight to the corner fulfills the task. But the
length of the path created is 1, whereas an arbi-
trarily short path could suffice for small values of
@. In fact, walking straight in any fixed direction
does not lead to a competitive solution.

A strategy for our problem should be a curve that
starts at point W on the visible wall and leads to
the prolongation of the visible wall. Since a strat-
egy can simply be shortened if its intersection with
a line through O contains more than one point, we
allow only curves which can be described with the
help of a function s of the angle ¢ as follows.

2S¢S%
s<e<T

Definition 1 A curve § = (go, s(ga)) in polar co-
ordinates about O is called a strategy for the corner
problem if the following holds.

(i) sis a continuous function on an interval [0,0],
where o < 7.

(ii) On the open interval (0, ¢), s is piecewise con-
tinuously differentiable and s’(0) exists (pos-
sibly +o0).

(iii) s(0) = 1.
(iv) If s(o) # 0, then o = .

The last property states that § must arrive at
P(7), including the corner.

Let Ag(y) be the length of the path generated
by strategy S up to the angle ¢. The competi-
tive function, fs(p), of S is the ratio of As(¢) and
a(¢yp), and its competitive factor, cgs, is the maxi-
mum value of fs(p).

As(e)

fS((p) a(()o)
cs = sup fs(p)

»€(0,7]

By fs(0) we mean limy—o fs(p), if it exists. The
problem is to find a strategy whose competive fac-
tor is as small as possible.



First, we show that each sensible strategy is in
fact competitive.

Lemma 2 Let § = ((p, s(tp)) be a strategy. Then
S is competitive iff |s'(0)] < co. The estimation

cs > 1/s%(0)+1

holds for the competitive factor.

Proof. Since

As(e) = [ /o2 + 2ty as (1)
0

holds for the arc length of a curve in polar co-
ordinates, we obtain from de 1’Hospital’s theorem
(i. e. by taking derivatives in both numerator and
denominator)

fs(0)
lim A;(%D)
=0 sin¢
) s(¢)? + s%(p)
= lim
¢—0 cos ¢

= /s2(0)+1

Since fs is a continuous function on the interval
[0, 0], it takes on its maximum value. o

v

Cs

To give an example, consider strategy S; that
walks along the circle through W with center in
the corner, i. e. s1(¢) = 1 for all ¢, see Figure 2.
We have 4s, (¢) = ¢ for all ¢, and f5,(¢) = 3
for ¢ € [0,3] and f5,(p) = ¢ for ¢ € [§,7]. It
is easy to check that fs attains its maximum at
p =m, thus c5, = 7 = 3.14159.

A better strategy, S,, is the following. We walk
along the circle with radius % through W centered
at the mid point between W and O, i. e. s3(p) =
cos ¢, see also Figure 2. Then s3(%) = 0, i. e. we
reach the corner, so we only need to consider the
angles ¢ in the interval [0, Z].

But As,(p) = 3(2¢) holds, implying fs,(y) =
fs,(p) = 525 for ¢ € [0,%]. The maximum value
cs, is only 5 = 1.57079.
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Figure 2: Some simple strategies, achieving com-
petitive factors cs, = 7 and ¢s, = §.

3 A differential equation and
the optimal solution

Intuitively, if one tries to improve on a given strat-
egy S by modifying it such that the maximum
value for fs(¢) becomes smaller, some other val-
ues fs(i') will increase. The key idea towards an
optimal strategy is to assume that this process can

_reach a state of equilibrium, and to look for a strat-

egy R such that fr(y) = ¢, i. e. constant, for all
. This constant, ¢, would then be the competi-
tive factor of the strategy. If there is more than
one strategy with this property, we would look for
the one with the smallest value of c.

Since a(yp) = sin ¢ for ¢ € [0, §], we try to solve
the following equation.

ARr(¥) [ W]
= = for all 0,-
fr(p) snp —¢ Torallee|0g
After inserting Equation 1 of Lemma 2, multiply-
ing by sin ¢, and taking the derivative with respect
to ¢, we obtain

ccosp = Ap(p) = 1/r2(p) + r2(¢)

This is an ordinary differential equation for the un-
known function r, the initial condition is r(0) = 1
because we have to start from W with angle ¢ = 0.
Since we want the robot to eventually arrive at
the corner, the solution should exist on an interval
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[0,0) where r(c) = 0 holds. For ¢ € [0,0) the ra-
dius () should be strictly positive. We solve the
equation for '(¢).

() = —y/? cos? g — r2(p) 2)

The negative square root is taken because the so-
lution r should be decreasing, meaning that the
robot should always come closer to the corner, as
it proceeds.

Equation 2 can be transformed into the following
differential equation of Abelian type.

w'(z) = (wz(z) + 1) (1 — w(z) cot :c)

However, there is no complete theory on equations
of this type, and a closed-form solution seems not
to be known, see Kamke [5] or Murphy [8]. Never-
theless, the existence of solutions can be shown.

Lemma 3 There is a constant cg > 1 such that
the following holds for solutions of Equation 2 with
initial condition 7(0) = 1.
(i) If ¢ = cr then there is a unique solution r
which ezists on the interval [0,7] and r(7) =
0.

(i) If ¢ > cr then there is a unique solution r for
each ¢ and it ezists on an interval [0, o] where
r(o)=0and0< o< .

(iii) For |c| < cr, there is no solution r such that
7(0) = 0 for some o > 0 or such that r ezists
on [0, 7].

The proof involves theorems from calculus and
the theory of ordinary differential equations and is
too long to be included here.

Now let R = (cp, r(gb)) be the strategy in which

7 is the solution of (2) for ¢ = cg. It now is clear
that the competitive factor of R is cg, and that
any other strategy S with constant ratio fs(¢y) is
worse than that:

The curve R is shown in Figure 3. Using the
numerical capabilities of Maple [2], we have deter-
mined cg to be approximately 1.21218.

Since there seems not to exist a closed-form so-
lution of Equation 2, one could think of computing
a good numerical approximation of R. But for the
robot, there is a much simpler method to find the
optimal path.

By introducing the angle a between the tanget to
curve R at the actual position and the line from the

actual position to the corner, it is easy to eliminate
the derivative 7’ from Equation 2. The result is the
formula ‘

o = arcsin ————
CRCOS
which means that the robot can, at each time, cal-
culate its walking direction « if only the current
distance to the corner r and the angle ¢ is known,
as well as the constant cg =~ 1.21218. For ex-
ample, the initial angle for ¢ = 0° and r = 1 is
a= arcsin(%). In particular, the length of the path
from the beginning to the actual position needs not
to be known.

Figure 3: The optimal competitive strategy R.



A nice property of the curve R is its convexity.
Lemma 4 The strategy R forms a convez curve.

The proof uses the curvature formula of a curve
in polar coordinates and the differential equation
which 7 is a solution of.

Now that the existence of a solution of the dif-
ferential equation and the convexity of the corre-
sponding curve is established, is is remarkably sim-
ple to prove the optimality of R.

Theorem 5 The strategy R is an optimal compet-
itive strategy for the corner problem.

Proof.
Let § = (cp, s(cp)) be a strategy different from R.
We distinguish four cases.

Case 1. If [s(0)| = oo then § is not competitive
by Lemma 2.

Case 2. If §'(0) < 7/(0) then we have, again by

Lemma 2,
\/82(0) +1
2 r(0)+1

A -

In the remaining cases s'(0) > 7(0) holds. Then
there exists an angle 9 such that s(¢) > r(¢) for
¢ €(0,9)].

Case 3. There exists an angle x < Z such that

s(x) = r(x) and s(p) > r(¢) on (0,x), see Fig-
ure 4. Then As(x) > Ar(x), due to the convexity
of R shown in Lemma 4. Hence,

A
s0)  ArK) _
sin x sin x

v

cs

I
o
o

cs > fs(x) =

Case 4. s(¢) > () for ¢ € (0,%]. Then cs is not
less than the total arc length of S, which is bigger
than the length of S between ¢ = 0 and ¢ = %,
plus the length of the line segment from (%, s(%))
to the origin. The length of this curve, in turn, is
bigger than Ar(%) = cg, again by convexity of R;
see Figure 4. m]
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Figure 4: Cases 3 and 4 of Theorem 5.

4 Final remarks

The problem can be generalized to the situation in
which the robot’s starting point, W, does not lie
on a wall but in the free area outside the wedge.
The problem becomes different, because now the
unknown angle ¢ can take on its values only in a
smaller range.

We are able to construct optimal competitive
strategies for all such cases. The optimal curves
are still convex, but, surprisingly, they are com-
posed of a solution of a differential equation like
before as the first part and a straight line segment
perpendicular to the -visible wall as the end. The
competitive function is constant only in the first
part. Its maximum value, the competitive factor,
is attained in the constant part and at the end
point.
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