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Abstract

In this paper, we consider the problem of moving
a convez polyhedral object among convezr polyhedral
obstacles which have pairwise disjoint interiors in
three dimensional Euclidean space. We use an aug-
mented Voronoi diagram, which is complete when
the free space is bounded, and prove that the size of
this diagram is is O(n?) when the size of the mov-
ing object and the number of obstacles are assumed
to be constant and n is the total number of faces on
the obstacles. We also give an efficient and easy to
implement algorithm to construct the roadmap.

1. Imtroduction. Collision Avoidance Path
Planning (CAPP) is a widely studied problem in
Robotics. In a general CAPP problem, a set of rigid
fixed objects in R? alongwith their orientations, po-
sitions and geometries is supplied, and the objective
is to find a feasible path for another rigid body M
(called the moving object or robot) from a starting
point s to a final point f, or report that no such path
exists. A particular class of methods suggested to
tackle the problem is called the Roadmap methods
[1,2,3,4,5,6]. Several of these approaches tackle only
simplified problems in lower dimensions [1,4]. Some
methods are for general dimensions and objects but
are very difficult to implement [3]. Other methods
proposed suffer from difficulties like incompleteness
(2], weak deformation retract [5] or absence of an al-
gorithm for construction of the roadmap [6]. Thus
the area of roadmaps in three or higher dimensions
remains relatively unexplored.

In this paper, we will discuss an algorithm for
translational CAPP problem in three dimensional
Euclidean space for a convex, polyhedral mov-
ing object and convex, polyhedral obstacles with
nonempty interiors. Also, the obstacles are assumed
to be pairwise interior disjoint and pairwise vertex
disjoint. The purely translational motion planning
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problem is important in assembly sequence plan-
ning and when contact motions are important [7].
We construct our roadmap in two stages. First, we
define a generalized Voronoi diagram which we call
the skeleton. This skeleton may not be complete.
In the second stage, we show that it is possible to
make this skeleton complete by adding a small num-
ber of artificial edges. In the process, we attempt
to answer an open question regarding the size of
Voronoi diagrams in 3D for nonpoint convex poly-
hedra [8]. We prove that, the size of such a diagram
(under the distance measure we use) is O(n2Q?2I2)
where n is the number of 2-faces on the obstacles,
Q is the number of obstacles and ! is the size of the
moving object. Thus when Q and ! are assumed
to be constant the data complexity is O(n2). We
prove that our roadmap is complete, and give an
efficient and easy to implement algorithm to con-
struct the roadmap. The complexity of the algo-
rithm is O((n + Ql)e +Q3) where e is the number
of edges in the roadmap. It is of interest to note
that since we are working with polyhedral obsta-
cles, a similar algorithm can construct the Voronoi
diagram of a point set under the box or sup metric.
2. Preliminaries. The following notations
will be used. O; denotes the i-th obstacle. M de-
notes the moving object. F is the set R®\ |JO; .
We call F the free space. F is the set of all points
in R3 where M can rest with respect to a reference
point v,.; belonging to the interior of M without
intersecting any O;. We call F the feasible free
space. For a set A, bd(A) denotes the boundary of
A, int(A) denotes the interior of A and relint(A)
the relative interior of A. Z3 will denote the straight
line segment joining the two points z and y.

Definition 2.1 A set S is said to be polyhedral
if S can be written as a finite union of convex poly-
hedra.

Definition 2.2 Suppose X;, i = 1,...,n are
polyhedral sets. Let E; be the set of all open 1-
faces of X; and V; the set of all O-faces of X;. Then
we call the set S = [ J{E; | Vi} the skeleton of {X;}.

To construct the generalized Voronoi diagram, we
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use a distance measure taken from [4].

Definition 2.3 Consider M, v,.; € int(M), and
z € R3. Then the M-distance of A from z is defined
as

d(z; A) = inf{A : (z + AM)[ A # 6,2 > 0}

Ifz € A, d(z;A) = 0. For convenience, we write
d(z; 0;) as di(z).

This distance measure has several advantages
over the ordinary !l metric. With this distance
measure, it is easy to trim off the infeasible parts
of the roadmap. Next, it takes into consideration
the shape of M, and thus the concept of “most
safe” path is meaningful. Also, it ensures that the
" roadmap has only straight line segments.

Definition 2.4 Let O; be an obstacle. Then the
cell associated with O;, C; is the set

{zeR®:di(z) < dj(z) Vi #4,5€1,...,Q}

where @ is the total number of obstacles.It can be
shown that each cell is polyhedral.

To avoid unnecessary complications in the algo-
rithm and the proofs, we make two generic assump-
tions [9]. One is called independence [10], which
says that every connected set of points where the ex-
panded object maintains exactly k touchesisa4—k
dimensional manifold for 1 < k < 4, and is empty
if £ > 5. The other is that for every z € R®\ O;,
the set (z + di(z)M) () O; is a singleton.

3. Basic Properties. We list a few basic
results which are used in later sections.

Proposition 3.1 Let A be a convex set. Then
the distance function d(.; A) : R® — R is convex.

Proof Consider z; € R3,z; € R3. Let
d(z1;A) = A1 and d(z2; A) = Az2. Therefore there
exist my € M,a; € A such that ; + A\;m; = a;.
Similarly there exist m; € M,a; € A such that
z2+A2mg = az. Now consider any 0 < p < 1. Then
p(z1+A1m1)+(1—p)(z2+A2m2) = pay+(1-p)as.
Since A is convex, the right hand side of the above
equation belongs to A. Call it ag. Expanding the
left hand side, we get (uz1 + (1 —p)z2) + (pA1my +
(1= p)A2m2) = a3. The first term of the left hand
side is a point on Z]Zg. Call it z3. Now define
A = pA; + (1 — p)A2. Then the second term of the
left hand side is /\(‘-‘;\&ml + Q-:flé!mg). But the
coefficients of m; and m, within the parantheses
sum to 1,0 < 4 <1, and XA > 0, thus producing a
convex combination. By convexity of M, this is a
point in M. Call it mz. Therefore the above shows
that for any z3 € T7Z; there exist mz3 € M,a3 € A
such that z3 + Am3 = a3. Therefore d(z3; 4) < A=
pA1 + (1 = p)A2 = pd(z1; A) + (1 — p)d(z2; A). W

Note that by the above proposition, d(.;A) is
continuous.[11]

Consider two obstacles O; and O;. Let z be a
point in R3 such that d;i(z) = dj(z), i.e. if vyes is
placed on z and M is expanded then it touches both
O; and O; simultaneously. Consider these touches.
Each of these touches can be described by the ele-
ment of the obstacle (open face, open edge or ver-
tex) being touched and the element of M (open face,
open edge or vertex) touching it. Let us define the
type of touch T at z as these two touch descriptions.

Consider only two obstacles O; and Oj, and ig-
nore others. Then the following three propositions

- hold.

~ Proposition 3.2 Consider a type of touch T'.
Then
C(T) = closure{z € R3 : d;(z) = d;j(z) and
type of touch at z is T'}
is convex.

Proof Given T, it is easy to see that C(T)
can be empty. So suppose C(T) # ¢. Given
T, the set C(T) can be described as a set of lin-
ear equalities and inequalities, the equalities aris-
ing because of the touch constraints defined by T
and the inequalities arising to take into account the
faces(edges,vertices) of O; and O; not in T. This
shows that a nonempty C(T) is convex. ]

It can be shown that (J; C(T) consists of poly-

- gons.

Proposition 3.3 Consider C(T) as above. Let
z) € C(T), z2 € C(T), z1 # z2. Then d;(z) varies
affinely over Z773. »

Proof As T is fixed, z+d;(z) M touches the same
face or edge or vertex of O;Vz € Z1Z;. For any
z1, %3 if we consider z = az; + (1 — a)zz,a € [0,1]
only the equality maintaining the touch correspond-
ing to T is necessary and so d;(z) = ad;(z;1) + (1 -
a)di(z2). |

Proposition 3.4 Consider D = | C(T), C(T)
as above. Then the number of polygons in D is
O(n,-njlz) where n;,n;,l are, respectively, the num-
ber of closed 2-faces on O;, O; and M. Also, the size
of vertex set and edge set of D are each O(n;n;I2)
and these bounds are optimal.

Proof Between O; and Oj, we can find n;n; com-
binations of 2-faces. Also, for a touch T to be main-

. tained we need two vertices or edges or faces from

M, which can be chosen in O(I?) ways. Thus the
total size of the face set is O(n;n;l%2). The exam-
ple in fig 4.1 shows that it is possible to have n;n;
combinations of obstacle faces for each object ver-
tex. A similar example can be constructed to show
that O(1?) combinations of object vertices are possi-
ble for each pair of obstacle faces. Combining these



two figures properly, we get the required bound [12].
Also, by convexity of O; and O, the size of the edge
set and vertex set of O; and Oj are also O(n;) and
O(n;) respectively. Using these results, it is easy to
show that the size of vertex set and edge set of D
are also O(n;n;1?). [ |
4. Data Size Complexity. Proposition 3.4
addresses the issue of data complexity when only
two obstacles are present. However, in a typical
case the number of obstacles Q is greater than 2.
Using the propositions 3.1-3.4, one can prove the
following result.

Theorem 4.1 Suppose there are Q obstacles,
and suppose n is defined as n = Y ;ni. Then the
size of each of the vertex set, edge set and the face
set of the polygons generated by 0;’s is O(n2Q?2I2).

Proof For lack of space, we leave out some of the
exact details of the proof. However, we give all the
major points in an intuitive way.

We will start with the edge complexity, and from
there we derive the bounds for the vertex set and
the face set. :

By independence, an edge e is generated by a
three touch. As for every point on the polygons
generated by O;’s at least two obstacles have the
same M-distance, the three touches must involve
at least two obstacles. Also, since there are only
three touches, they can come from at most three
obstacles. Thus there are only two different cases
to consider. '

Case 1. 3 touches involving 3 obstacles : Con-
~ sider the obstacles O; and O;. The number of edges
generated by these two is O(n;n;I?). Suppose we
introduce a new obstacle O;. Let us call the poly-
gons generated by O; and O; as P,;. Then new
edges can be generated by intersection of (P and
FPix) and (P;j and Pj).

Using propositions 3.1 and 3.3 one can establish
that an edge of P;; can be broken into at most two
edges because of Oy, i.e. an edge e can generate
at most one new edge. Also, new edges can be
formed by intersection of polygons in P;; and Py.
Note that by independence, a polygon in P;; and
a polygon in P;; can’t have a common relative in-
terior(because that implies that the set of points
where three obstacles are equidistant is a 2D mani-
fold). Thus intersections of polygons of P;; and Py
are transversal. Next observe the following. Sup-
pose two polygons P, and P, intersect in such a way
such that the intersection lies in relint(P;). Then
P, is truncated at this intersection and can’t in-
tersect any other polygon. Also, the existing part
of P, can’t contribute another edge as affine varia-
tion of M-distance in relint(P;) implies such a case
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is impossible. Thus if a polygon P; intersects r
other polygons where r > 2 then at least r — 2 of
these intersections lie in relint(P;) and are trun-
cated. Then it is easy to see that the total number
of extra edges that can be created by polygon inter-
sections of P;; and P;; is at most O(n;n;12+n;n12).
Thus we have, for P;; (] P, total number of edges
as O(n;n; 1% + n;nil?). Similar argumnets hold for
P;.

Considering P;j () Pjz, we find, by similar rea-
soning, at most O(n;n;1%+n;nil?) edges. Together
they imply at most O((n;n; +n;ni +n;n; )I?) edges.

Considring all possible triples (i, j, k), the size of
3 obstacle edge set is O(n2QI?).

Case 2. 3 touches involving 2 obstacles : Using a
reasoning similar to case 1 we can show that the 2
obstacle edge set size is O(n2i?).

Considering the two cases together and observing
that each edge can generate one extra edge by each
remaining obstacle, we have the total edge complex-
ity as O(n2QI%)0(Q) = O(n2Q212).

Since every edge has at most two vertices and
each vertex belongs to the closure of an edge, the
size of vertex set is equal to the size of the edge
set. Also, every edge is created because of three
touches; so locally around each edge we can find at
most three polygons(each polygon is created by a
two touch). Therefore the size of face set also is the
same as the edge set. |

Suppose P is a polygen in D = | J; 1 C(T). Let
P={zeP: di(z) > 1Vi}. We call one connected
component of P with connected relative interior a
feasible polygon. Then the following holds.

Theorem 4.2 Suppose there are Q obstacles.
Then the size of each of the vertex set, edge set
and the face set of the feasible polygons generated
by O;’s is O(n2Q?1?).

Proof The following result is easy to _establish.
Suppose P is a polygon in D. Then set P is either
¢, or whole of P or is such that P and P\ P are
seperated by a straight line a-z = c. ie. Vy €
Pa-y>candV¥z€ P\Pa-z< c. Thus each
polygon P in D has at most one straight line L
dividing it to generate P. L can intersect each edge
at most once, thus adding at most e edges where ¢
is the number of edges for P. Similarly, number of
vertices can increase by at most e, and number of
polygons by at most e. |

In a recent paper[13], de Berg et.al. showed that
for any two given points p and ¢ which are path
connectible, there exists a piecewise linear path be-
tween p and g which is of size O(Q*), although they
do not give an algorithm. This is an interesting
topological result since the complexity does not in-
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volve n and [; in fact this result holds for general
convex obstacles and object. In comparison to this
result, theorem 4.2 should be viewed from a differ-
ent perspective because of the following two reasons:
(i) theorem 4.2 specifically applies to piecewise lin-
ear paths with Voronoi properties; (ii) the Voronoi
diagram of theorem 4.2 is a global structure using
which it is easy to determine a path between any
two path connectible points.

Now we define the basic component of our
roadmap.

Definition 4.1 The skeleton is the skeleton of
cells {C;},i=1,...,Q.

Note that by theorem 4.1, the skeleton size is

o(n%Q?%1?).
5. Algorithm for construction of skeleton of
{Ci} in F. Here we give an informal descrip-
tion of the algorithm for construction of the skeleton
of {C;} in F. Full details can be found in [12].We
will assume that F is bounded.

The M-distance between an obstacle O; (de-
scribed as O;z < @;) and the moving object M (de-
scribed as Py < ¢) from a point p can be found by
solving the linear program(LP) : min A such that
P(z — p) < A\q,0;z < a;,A > 0, where z is the
M-closest point to p on O;,A = d;(p). The com-
plexity of solving this LP is linear in number of
constraints[14], i.e. O(n; +1).

We start by finding an initial starting point. Con-
sider two obstacles O; and O;. Then minimization
of A subject to P(z—p) < Aq, P(y—p) < Ag,0iz <
a;,0jy < aj,A > 0 (where z and y are the M-
closest points to p on O; and O; respectively, p is the
position of vz, and A = d;(p)) gives an equidistant
point p from O; and O; if one exists. Then find the
M-distances from p to OpVk = 1,...,Q,k # 1,j.
If every di(p) > A, then p is a feasible starting
point. Else choose a new pair (¢, j) and repeat. Note
that this process terminates because we have only
finite number of obstacles and when the free space
is bounded, one such pair will eventually generate
one valid p.

Next we check if this point lies on an edge or
a vertex(the check is done easily beacuse for every
edge point three touches are active and for every
vertex four touches are active, and while finding
di(p) we can easily check for this). If so, we are
already on the skeleton. If not, then p is on an
open face of bd(C;). Then we move along a random
direction on the face and using propositions 3.1 and
3.3 formulate another LP to find a point on the
skeleton along the chosen direction. Because F is
bounded, any random direction is sufficient.

Once a point on the skeleton is reached, we

start constructing the skeleton as follows. The LP
which took us to the skeleton also gives informa-
tion about the complete type of touch description
at this point. Using this information, it is possible
to find analytic expression(s) of the edge(s) which
contain(s) this point. To find the delimiters of the
edge(s)(vertices), we formulate LPs again. Thus,
we construct successive vertices, and continue con-
structing the skeleton component polygon by poly-
gon. Note that the word polygon is used in a loose
sense to identify a polygonal boundary in a skele-
ton component.Thus we get complete information
about a connected component of the skeleton.

The above procedure suffers from one serious de-
fect. Consider fig 5.1. Suppose this configuration
is floating inside ‘another box. If we choose the di-
mensions of the boxes properly, then P; is a polygon
wholly generated by the three boxes B;,B; and Bs
and P, is a polygon wholly generated by B;, B2 and

~ the outside box. There is a connected component of

the skeleton which contains P; and another compo-
nent which contains P,; and these two are disjoint
although both belong to the same connected compo-
nent of free space. Thus the above algorithm must
identify each connected component of the skeleton.
Also, to make sure that in one connected component
of F the skeleton is connected, it must have a way
of joining such disconnected skeleton components.
The following definition is useful in this respect.

Definition 5.1 A polygon P is said to be con-
tained in another polygon P, if P C relint(P;).

In fig 5.1, P; contains P,.

The following result can be established. Consider
a triple (i,5,k),i,5,k € {1,...,Q},i # j # k. Then
there exists only one connected skeleton component
where O;, O;, Oy, contributes a point. Also, suppose
a polygon P is contained and the obstacles associ-
ated with its edges are O;, O; and O, with only O;
active in its interior. Then the triple (i, j, k) cannot
form a polygon which contains another polygon T
such that the edges of T involves O;, 0; and O; with
O active in its interior.

We also prove the very important result that if a
single obstacle has two disconnected skeleton com-
ponents associated with it in one connected compo-
nent of F then one of them has a polygon contained
in a polygon of the other. Using these results, we
modify the algorithm as follows. For every polygon
constructed, we check if it is a contained one. Sup-
pose this polygon is P and it is a contained one.
Suppose the obstacles active on the edges of P are
0;,0; and Oy, with O, being active in the interior
of P, and z is a point on bd(P). Note that this
means we already know that O;, O; are involved in



the container polygon. We choose a random direc-
tion d in the plane of P. In this direction we find
the first point where an obstacle Oy, VI # 1, j, k has
the same M-distance as O;(and thus O;). These
points can be found by solving a series of LPs. Also,
since the container polygon may involve only O;
and O;, we solve another LP to find out the first
point where only the pair O; and O; contribute
three touches. All these points are candidate points
for the container polygon as for each of these points
three touches are active. However, all of them may
not be feasible. We sort these points according to
their distances from z in increasing order. Now we
scan the list from left to right. Each point has a
triple (%, j, ) associated with it. If this triple is such
that ! is one of i or j then this is the container
polygon. If this triple is not encountered before, we
start constructing this skeleton component and in
the process identify whether this is the container
polygon. If this triple is encountered before and
generated a contained polygon then we skip to the
next point, else this is the container polygon. In the
process, all such contained polygons can be con-
nected using artificial wholly feasible straight line
edges, and the last of them can be connected to the
container polygon. The check if a triple is encoun-
tered or not can be done in constant time by main-
taining an array of all triples where each triple is
assigned a pre-fixed place, and storing information
about whether this triple created a contained poly-
gon and if so, whether already joined. Thus we get
complete contained-container information, and we
join the contained polygons to the container using
artificial straight line edges, which are wholly feasi-
ble if the endpoints are feasible. The final result is
a connected skeleton. These artificial edges do not
change the data size of the output as for every con-
tained polygon we need only one extra edge. Also,
the process of constructing the complete skeleton
over all connected components of free space is finite
by virtue of the following proposition which can be
proved using finite induction over the number of
obstacle faces.

Proposition 5.1 If F has two disconnected com-
ponents F; and F, then there exist faces f; of some
O; and f; of some O; such that f; contributes a
point to F; but not to F,, and f; contributes a
point to F> and not to Fj.

Thus checking whether each face of each obstacle
has contributed a point to a skeleton component
suffices as a test for termination.

Theorem 5.2 The complexity of the algorithm
is O((n+Ql)e+Q?), where e is the number of edges
in the skeleton. In the worst case, e is O(n2Q%I2)
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and the complexity is O(n3Q%? + n2Q31%).

The skeleton, as formed by the algorithm is
enough if we are interested only in the Voronoi di-
agram of the polyhedra. However, for motion plan-

- ning we need to consider only a subset of this dia-

gram, namely the set R = {z : z € skeleton, d;(z) >
1Vi=1,...,Q}. The next result concerns that.

Theorem 5.3 The roadmap R can be con-
structed in worst case O(n®Q?1% 4 n2Q3®) time.
6. Motion Planning. In the previous sec-
tion, we sketched the algorithm to construct the
roadmap. That this roadmap is useful for motion
planning is established by the following complete-
ness theorem.

Theorem 6.1 Suppose the feasible free space F
is bounded. Then for every connected component
of F, the roadmap R is connected.

Proof For a cell C;, consider the set {z € C; :
d;(z) > 1}. We call this the feasible set of cell C;.
Note that this set may be ¢, one connected compo-
nent or union of several connected components. We
call each of these connected components a feasible
cell.

Let C be a connected component of . Also sup-
pose the proposition is not true for C. Then there
exist disconnected components of R in C. Since
number of feasible cells is finite, there exist only fi-
nite such disconnected components. Let these be
R13R2"-°er' ) '

Let the feasible cels associated with R; be
F;,,...,F;,. Since F is bounded, every feasible
cell boundary consists of closed polygons. Thus
no feasible cell of R; can intersect a feasible cell
of R;,j # i because if they do they must intersect
at the boundary and so we either have an intersec-
tion at the skeleton or a containment and in both
cases the algorithm generates a connected skeleton.

Now consider p € Ry,q € R;,. Since R;,R; € C,
there exist path PATH from p to ¢ in C. Since
there exist only finite number of R;’s, there ex-
ist a point w € PATH such that w ¢ F)vi =
1,...,7n,Vj=1,... k. But then there does not ex-
ist any feasible cell containing w which implies w is
not feasible. But w € C and we reach a contradic-
tion. |

Given this, the idea of motion planning is as fol-
lows. For any given starting point s € F, we map
s to a point on the roadmap. Call this point s,.
Similarly, the final point f € F is mapped to f,.
The mapping is well defined, and we solve an LP
for each mapping. The complexity of the mapping
is O(n + QI). There exists path from s to f iff
there exists path form s, to f, on the roadmap. We
search on the roadmap for a path from s, to f,. The
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complexity of search is O(e) where e is the number
of edges in the roadmap.

We maintain the following data structure. We
form an abstract graph with polygons as vertices,
two polygons P, and P are connected if they share
an edge or a vertex in the skeleton. Contained poly-
gons also form nodes in the graph but they are
connected to their adjacent polygons as well as to
those polygons to which they are connected by ar-
tificial edges. When s and f are specified, they are
mapped to the skeleton and a search process is ini-
tiated on the abstract graph, and path is found on
the graph. The polygons involved in the abstract
graph are then traced to find the actual path on the
skeleton.
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