Rectangle Packing in Polynomial Time

Gunter Bar - University of Greifswald
Claudia Iturriaga - University of Ottawa

June 17, 1993

Abstract

A variation on the problem of packing rectangles in a rectangle with
minimum area is the following formulation: Given a set of rectangles with
fixed area with their dimensions varying within a given range, pack them
in a minimum area rectangle. This problem has been shown to be NP-
complete. We study a special case of this that consists in packing the
rectangles in a single column, in which the rectangles are stacked. In
this paper we study the following problem: Given a set F of n elastic
rectangles, pack them in a rectangular column R of minimum area. The
elements of F are stacked in R. We present a O(nlogn) algorithm to
solve this problem.

1 Introduction

One of the problems that has been studied in VLSI ([GJT80, Sto83, Ott83,
WKC88, Hak88, DCL89, WKC89, VTs90]) is that of packing a set of rectangles
F into a rectangle R of minimum area. We shall refer to R as the packing
rectangle. Usually the rectangles represent circuits, and the packing rectangle
represents a chip.

Several variations to the rectangle packing problem have also been stud-
ied, i.e. The two-dimensional packing [GIT80] and Floorplan [Sto83]. Both
problems have been shown to be NP-complete.

Another variation to this problem is known as “ Aspect Ratios” deals with
packings of sets of elastic rectangles. An elastic rectangle R; is one in which
the length [; and width w; of R; can be stretched or shrunk within prespec-
ified ranges, while keeping the area a; of R; unchanged. This problem was
studied in [WKC88, DCL89, WKC89, VTs90] and proved to be NP-complete in
[Hak88]. Another variation to the rectangle packing problem, known as the col-
umn packing problem, consists on packing a set of rectangle F = {R;,..., Rp}
into a single column R of minimal area. In this case, we require the elements of

455

456

F to be stacked in the column. This case was studied in [Hak88]. In the same
paper Hakimi obtained an O(nlogn) algorithm to solve this problem.

In this paper we present an O(nlogn) algorithm for the column packing
problem allowing the rectangles of F to be elastic.

2 Formulation of the Problem for a Single Col-
umn

We want to develop an algorithm with the following parameters:

Input.- A family of elastic rectangles F = {R;, Rz,..., Rn}. A fixed area
a; for each rectangle R;. The aspect ratios v;, §; which determine the ranges
in which the length /; and the width w; of the rectangle R; can vary, while
maintaining the area a; of R; constant; i = 1,...,n. The aspect ratios satisfy
1<y <kLfw; <B;withi=1,...,n.

Output.- A rectangle R of minimum area such that the rectangles of F are
packed in R stacked on a single column.

Operations.- Two types of operations are allowed:

1) Rotations by 90°.

2) Stretching and shrinking of the rectangles in F such that their areas are
preserved.

We suppose without loss of generality that /; > w; foralli=1,2,...,n. It
is easy to see that the following inequalities hold: \/e;/8i < w; < Veif/% <
Vo <k < Va; B;. Without loss of generality we assume the strict inequalities
Vei/Bi < \/ai/7 < \/&7 < VaiB;. Our algorithm can be easily modified to
solve the case when equalities are allowed.

We notice that, if for a rectangle R; we maximized its length l; (I; = V&P
) then its width w; is minimized (w; = \/e;/B;). Similarly if we minimized its
length then its width is maximized.

We can observe that a rectangle R is a solution to our problem if it minimizes
the waste area contained in it that is the space within R not covered by any

rectangle of 7. We use this idea in our algorithm by minimizing the waste area
contained in R rather than the actual area of R.

3 ALGORITHM

First, we give an intuitive idea of solve this problem works. Intuitively speaking
our algorithm starts by laying down all of our rectangles so that their bases
are maximized and parallel to the column base. This way all the rectangles are
stretched as much as they are allowed, thus obtaining an initial solution with
minimal height. We then proceed to shrink the base of our enclosing rectangle
thus increasing the height of it and during the process we shrink or rotate one
by one the elements of F. '

During the shrinking process of the base B of our column, for each elastic
rectangle R; of F four critical positions have to be analyzed. Since at some point
of our algorithm each rectangle R; is rotated by 90°, the “base” of R;, that is
the side of it parallel to the base B of our column, could be the side determined
by its length or that determined by its width. Thus for our algorithm, we need a
parameter b; which indicates the size of the base of R; at any given time during
the execution of our algorithm.

Moreover, each R; generates up to four critical positions which will be in-
dicated by a variable p(3), i.e.:

a) p(¢) = 1 if b; has value l; = V/oi ;.

b) p(i) = 2 if the b; has value l; = \/a;7%;.
c) p(i) = 3 if b; has value w; = \/a; /7.

d) p(i) = 4 if b; has value w; = \/m
The starting configuration of our algorithm can be describe as follows:

a) Each rectangle R; of F is laid down in a column in such a way that its
base b; is maximized. In this case we can see that each rectangle R; is in
critical position p(¢) = 1, ¢ = 1,...,n. We call this state of the column
the initial state.

b) An initial packing rectangle R is formed and the waste area contained in
it is calculated.

¢) Get the rectangle R;, which base b;, = max{\/a;f;, fori = 1,...,n}.
d) Let B = b;,.

We now begin to shrink B. Let us focus our attention on the behavior of a
single rectangle R;.

While the size of B is greater than or equal to \/a;5;, the shape of R; remains
unchanged. Once the size of B enters the interval [,/a;7;, Vi B,l the length of

457

458

R; shrinks with that of B and R; generates no waste in R. Once the size of
B reaches /a;%; in order to keep on shrinking B, R; has to be rotated (for
otherwise R; would prevent us from shrinking B any further). Similarly once
R; has been rotated, we need to deal with it only at the times when the size of
B enters and leaves the interval [\/a;/8;, \/ai/7i]-

In view of all of the above, it follows that each rectangle R; has to be
considered at the four critical positions defined before, i = 1,...,n;i.e. when the

size of R equal: /i 5, /@i, \/@i/¥i, \/@i/Bi. Therefore, during the shrinking
process of the base B of our column, we have to consider, in decreasing order
all of the points of

S = U {Vaibi, Ve, Vi /v, Vei/ i}

If we can update the waste area of R from one of S to the next in constant
time, since |S| = 4n we can update the waste area of R in O(n) time.

We now give a pseudo-codification of our algorithm.
Algorithm
o Obtain the the initial state of the column R.

o Build a maxheap H which there is a node for each recta.ngi_e R; in F that
contains: i identifier of Ri, lmax = V@i Bi, lmin = V@i, Wmax = V/ a;/v,
Wmin = /@B, its current base b; and height h;, and its critical position
p(i). The sorting key of H is b;.

e Get the initial pivot rectangle R;, with maximal key from the heap.
e stop_rectangle — R;,.
o Calculate the waste area WA in the initial column:
n
WA = Z Veai/B; (stop_rectangle.b,- - \/a;ﬁ;) .

=1
o Initialize the minimum Waste Area WA «— WA.
o Compute the Height of the initial Waste Area region

HWA = (2”: Vv a,-/ﬁ,-) — stop.rectangle.h;.

=1

e While p(ip) # 4
1. old_stop — Ry,.

459

. Move the rectangle R;, to the next critical position, p(io) «— p(t0)+1.
Update b;, and h;,.
If p(io) = 3, the rectangle R;, has been rotated then update the
waste area region and its height:

WA = WA + R;,.hi, (stop-rectangle.b; — R;,.b;,)
HWA = HWA + R;,.h;,

and update the minimum waste area WA «— WA.

. Insert R;, in the maxheap with the new critical position and its new
base b;,.

. Get the new pivot rectangle R;, from the maxheap:
stop-rectangle — R;,.

. Update the waste area region WA for the following cases:
If stop-rectangle = old_stop and
((stop-rectangle.p(i) = 2 and old_stop.p(i) = 1) or (stop-rectangle.p(i) =
4 and old_stop.p(i) = 3)), then we update only the waste area WA
(the height of this region does not change, since the rectangle R;, is
shrunk together with the base of the column).

WA = WA — HWA (old_stop.b; — stop-rectangle.b;).
Else, we have to recompute the waste area and the height:
WA = WA — HWA (old_stop.b; — stop_rectangle.b;)
HWA = HWA - stop_rectangle.h;.
6. WA = min(WA, WA).

end {While }

We now proceed with the complexity analysis of our algorithm. To put
the rectangles in initial position and build the heap takes O(n) time. The
computation of the waste area and the height of the waste area takes constant
time. The loop is executed 3n + 1 times. Each time the loop is executed we
delete and insert on the heap which takes time O(log n). Therefore the algorithm
takes O(nlogn) time.

References

[GIT80] E. G. Coffman, Jr. M.R. Garey, D.S. Johnson and R. E. Tarjan, Per-

Jormance Bounds for Level-Oriented two-dimensional Packing Algo-
rithms, SIAM J. COMPUT. Vol.9 (1980) 808-826.

460

[Sto83]

[Ott83]

L. Stockmeyer, Optimal Orientations of Cells in Slicing Floorplan De-
signs, Information and Control 57 (1983), 91-101.

R. H. J. Otten, Efficient Floorplan Optimization, IEEE International
Conference On Computer Design in VLSI in Computers, (1983), 499-
502.

[WKC88] S.Wimer, I. Koren and 1. Cederbaum, Floorplans, Planar Graphs,

[Haksg]

and Layouts, IEEE Trans. Circuits and Systems (1988), 267-278.

S. L. Hakimi, A Problem on Rectangular Floorplans, Proc. Int. Symp.
on Circuits and Systems (1988), 1533-1536.

[DCL89] S. Dong, J. Cong and C.L. Liu, Constraint Floorplan Design for Flezi-

ble Blocks,JEEE International Conference On Computer-Aided Design
(1989), 488-491.

[WKC89] S. Wimer, I. Koren and I. Cederbaum, Optimal Aspect Ratios of

[VTs90i|

[GIoT79]

Building Blocks in VLSI, IEEE Trans. Computer Aided Design of
Integrated Circuits and Systems (1989), 139-145.

G. Vijayan, R.S. Tsay, Floorplan by Topological Constraint Reduction,
IEEE International Conference On Computer-Aided -Design (1990),
106-109. i .

M. Garey and D. Johnson, Computers and intractability, Freeman
(1979).

