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Abstract

We discuss the Lawnmower Problem: Given a polygonal
region, find the shortest closed path along which we have
to move a given object (typically a square or a circle),
such that any point of the region will be covered by the
object for some position of it movement. In another
version of the problem, known as the Milling Problem,
the object has to stay within the region at all times.

Practical motivations for considering the Lawnmower
Problem come from manufacturing (spray painting,
quality control), geography (aerial surveys), optimiza-
tion (tour planning for a large number of clients with
limited mobility), and gardening. The Milling Problem
has gained attention by its importance for NC pocket
machining.

We show that both problems are NP-hard and give
the (to our knowledge) first proof of a constant approx-
imation factor for an approximation algorithm.

1 Introduction

Anybody who has ever mowed a lawn has been con-
fronted with the situation shown in Figure 1: For a given
region covered by grass, find a short path along which
to move a lawnmower, such that all the grass is cut.

This Lawnmower Problem arises in many practical sit-
uations. Motivations from manufacturing deal with pro-
duction and quality control:
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e How do we have to move the nozzle of a spray paint-
ing device in order to coat the whole surface of an
object?

e How do we have to move the sensor of a detector
that checks objects for imperfections?

A question of similar type arises from geographic sur-
veys: --

e How do we have to move a video camera or other

detector to do a complete survey of a given region?

Figure 1: The Lawnmower Problem

We should also point out that the Lawnmower Prob-
lem is closely related to the Traveling Salesman Problem
with mobile clients:
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e What is the shortest tour for a salesman who has to
visit a number of clients, each of which is willing to
travel some bounded distance in order to meet the
salesman?

Instead of considering the region of mobility for each
client, we can think of moving this region with the sales-

man - thereby getting the Lawnmower Problem with

the set of client locations being the set that has to be
“mowed”. For a finite set of points, this problem has
been studied by Arkin and Hassin (1]. Qur results allow
us to consider the case of an infinite number of clients
with original positions within a given region.

Closely related to TSP problems are “watchman
route” problems, which ask one to find a short tour so
that a mobile watchman sees all points within a given do-
main. Our lawnmower problem is most closely related
to the watchman route with limited visibility problem,
as studied by Ntafos [9], who introduces the “d-sweeper
problem”: How does one sweep a polygonal floor with
a circular broom of radius d so that the total travel of
the broom is minimized? By studying the problem of
approximating TSP tours on simple grid graphs, Ntafos
gives an approximation algorithm (within factor 1.33)
for the d-sweeper problem in a simple polygon, provided
that d is sufficiently “small” in comparison with the di-
mensions of the polygon. :

A question of slightly different type is motivated by
the industrial process of pocket machining: From a given
workpiece, material has to be removed by means of
milling; the resulting negative region is called a “pocket”.
The difference to the Lawnmower Problem is that the
carving object may not leave the given region.

Geometric aspects of pocket machining have been
studied extensively, most notably by Held [6]. He gives a
survey of practical aspects and implementation, with the
main emphasis being on achieving feasibility of a milling
tour. Aspects of complexity are only mentioned very
briefly: The question of polynomiality or NP-hardness
of the Milling Problem and some of its special aspects is
stated as an interesting problem for further theoretical
research. (Aspects of approximating the optimal path
length are not mentioned.) Held also stresses the ne-
cessity for future research of the problem with a more
theoretical orientation. In this first paper, we try to
shed light on some theoretical aspects dealing with the
optimization of the length of a milling and lawnmower
tours.

The main results derived in this paper are as follows:

e It is NP-hard to determine an optimal lawnmower
tour, even if the given region is a simple polygon.

e It is NP-hard to determine an optimal milling tour
if the given region is a polygon with holes.

o The shortest lawnmower tour can be approximated
within a constant factor.

o The shortest milling tour can be approximated
within a constant factor.

The rest of the paper is organized as follows. Section 2
discusses a basic problem of the description of feasible
lawnmower tours. Section 3 gives an NP-hardness proof
for the Lawnmower Problem and the Milling Problem.
Section 4 and Section 5 describe provable approxima-
tion factors for the Lawnmower Problem and the Milling
Problem. Section 6 discusses further research.

2 Describing lawnmower tours

In general, we will assume that our region is described as
a polygon (possibly with holes) with n edges. However,
even for very simple polygons the number of edges in any
feasible lawnmower tour may be exponential in the size
of the input data — see Figure 2 for an easy example.

Figure 2: A feasible lawnmower tour may require a large
number of edges

This problem can be solved in the following two ways:

1. We consider the value of the input numbers and not
the length of the input numbers as the basic mea-
sure of complexity. This means we consider meth-
ods that are pseudopolynomial in the usual sense.

2. We consider tours that consist of a polynomial num-
ber of pieces with a regular structure, meaning that
we could encode a tour in a shorter way than by
giving a list of its edges.

In his book on the Milling Problem [6], Held con-
centrates on two natural strategies — see Figure 3: (1)
contour-parallel milling, and (2) axis-parallel milling.



Figure 3: Contour-parallel and axis-parallel milling

It seems reasonable to assume that partial tours that
follow one of these two strategies can be encoded effi-
ciently.

3 NP-hardness results

In this section, we will show that the Lawnmower Prob-
lem is NP-hard. We will outline the proof for the case
where the mowing object is a unit square; the proof for
the case of a circle follows with a simple modification. It
also follows from our proof that the Milling Problem is
NP-hard.

Theorem 3.1 The Lawnmower Problem for a mowing
square is NP-hard.

Proof: Our proof makes use of the reduction of
the problem HAMILTONIAN CIRCUIT IN GRID GRAPHS
from HAMILTONIAN CIRCUIT IN PLANAR BIPARTITE
GRAPHS WITH MAXIMUM DEGREE 3, as described by
Johnson and Papadimitriou [8]. (See also Itai, Papadim-
itriou and Swarcfiter [7].) In a first step, a planar bipar-
tite graph G with n vertices (each of maximum degree
3) is represented by a grid graph G, such that G has a
Hamiltonian circuit if and only if G has a Hamiltonian
circuit. (See Figures 4 and 5 for an example of such a
representation.)

Figure 4: A planar bipartite graph

From this grid graph G, we construct a polygonal re-
gion P as follows: At each of the m = O(n) grid vertices
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Figure 5: NP-hardness of the Lawnmower Problem

in G, place the center of a unit square. P is the union
of all these unit squares.

It is easy to see that the existence of a tour of length
m on the grid vertices describing G implies the existence
of a lawnmower tour of length m. On the other hand,
it is relatively straightforward to show from the special
structure of the constructed region that a lawnmower
tour of length m induces a tour of length at most m in
the grid graph. (See Figure 5.) O

Corollary 3.2 The Lawnmower Problem is NP-hard
even in the case in which the region to be mowed is a
stmple polygon.

Proof: The idea is to connect holes in the polygon by
sufficiently narrow “cuts”, as indicated in Figure 6.

Figure 6: NP-hardness of the Lawnmower Problem for
simple polygons

Clearly, the existence of cuts of arbitrarily small area
does not change the relation between a short lawnmower
tour and a short Hamiltonian circuit in the grid graph. O
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Since the optimal lawnmower tours in Theorem 3.1 are
also feasible milling tours, we get

Corollary 3.3 The Milling Problem for unit squares
and polygons with holes is NP-hard.

It should be noted that a similar approach for showing
NP-hardness of the Milling Problem in the case of simple
polygons may not be helpful: It is still unknown whether
the existence of a Hamiltonian circuit in a grid graph
without holes can be decided in polynomial time.

We conclude this section by pointing out that the
Lawnmower Problem for a circular mower is NP-hard:

Theorem 3.4 The Lawnmower Problem for the case of
a circular mower is NP-hard.

Figure 7: NP-hardness for a circular la.wnmowér

Sketch: The basic idea is similar to Theorem 3.1. At
each of the grid vertices, we place a diamond of diameter
1 instead of a unit square; furthermore, we place addi-
tional triangles of a quarter size of the diamond, depend-
ing on the neighbors in the quadrant. (See Figure 7.) We
omit further details at this point. O

4 An approximation method for
the Lawnmower Problem

In the following, the term “pixel” refers to a unit square
with vertices being integer grid points.

Theorem 4.1 Let R be a connected region of grass in
the plane, and let N denote the number of integer lat-
tice pizels that intersect R. Assume that the mowing
object is a unit square, required to remain aligned with
the coordinate azes. Then in time O(N) one can com-
pute a lawnmower tour for R whose length is at most 6
times the length of an optimal lawnmower tour restricted
to azis-parallel movement. Without the aris-parallel re-
striction, the approrimation factor becomes 5v/2.

Proof: Let P denote the set of all pixels that contain
some grass. Since R is connected, so is the grid graph G
whose nodes correspond to centers of pixels of P.

Our approximation algorithm is simple: Obtain a tour
by doubling a spanning tree of G. This can clearly be
done in time linear in the size of G — namely in time
O(N).

The feasibility of the tour produced is clear from the
fact that it will necessarily cover all pixels of P, and
hence will mow all of R.

The length of a spanning tree in G is simply N — 1,
and the length of the tour produced is therefore at most
2(N —1). On the otheér hand, by Lemma 4.2 below,

N <3Lopr +9,
where Lopr is the length of an optimal lawnmower tour.
Thus, we obtain a bound on the length, Lspp, of our

approximating tour:

Lapp <2(N —1) < 6Lopr + 16

(m]

‘Lemma 4.2 If a unit square is moved without rotation

in the plane, such that its center moves a total distance
of L, then the region swept out can intersect at most
5/V2L + 9 of the pizels defined by the integer lattice
points. If the motion of the square is further restricted so
that its translation is always azis-parallel, then at most
3L 4+ 9 pizels are intersected by the swept region.

We can prove Lemma 4.2 by estimating the number
of grid points contained in the region swept by a square
of edge length 2 while moving it along a path of length
L. (See Figure 8.) We omit further details here.
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Figure 8: Counting the number of intersected pixels

Theorem 4.3 Let R be a polygonal region of grass con-
sisting of k < oo connected components having a total
of n vertices, and let N denote the number of integer
lattice pizels that intersect R. Assume that the mowing
object is a unit square, required to remain aligned with
the coordinate azes. Then in time O(N + nlogn) one
can compute a lawnmower tour for R whose length is
at most a constant times the length of an optimal lawn-
mower tour.



Sketch: Let P denote the set of pixels that contain
some grass. Let G be the grid graph corresponding to
the center points of pixels P. Then G may have many
connected components. Let kg denote the number of
components; note that kg < k. Within each connected
component, C;, of G, we can proceed as before, and ob-
tain a lawnmower tour approximation within factor 6 or
5v/2 of optimal.

Now, for each component C; we “fatten” the grass re-
gion that lies within C; by an amount 1/2 (in Lo, met-
ric), obtaining a polygonal set Q;. Treating the sets
Qi as regions through which travel is “free”, we con-
struct a minimum spanning tree on the sets @; (in time
O(nlogn), using either an L; or a Euclidean minimum
spanning tree algorithm, depending on whether or not
we are restricted to axis parallel movements). By in-
creasing each edge of the MST by at most length 2, we
can make attachments between center points of pixels of
the components C;. Then, we can construct one lawn-
mower tour that mows all of R by concatenating each
of the approximating tours for each Cj;, together with a
doubling of the extended edges minimum spanning tree.

The length of the extended minimum spanning tree is
bounded above by the length Lopr of the overall optimal
tour plus 2(kg — 1) (the total extension to all edges of
the MST). Also, for each connected component we know
that L,pp(C;) < cLopr(C;), where c is either 6 or 5/2.
Finally, one can show that Lemma 4.2 implies that kg <
3Lopr + 9. Thus, our overall bound becomes

Lapp
< > Larp(C;) + 2LysT
< cZ‘- Lopr (C,') + 2Lopr + 2(2(]6@ - 1))
< (c+2)Lopr + 4(kg - 1)
< (c+14)Lopr + 32.

(]

The methods described in Theorem 4.1 and Theo-
rem 4.3 can be used for constructing an approximating
lawnmower tour that has a fast running time in an even
stricter sense:

Corollary 4.4 We can construct an approzimating tour
as in Theorem 4.1 or Theorem 4.3 in time O(nbd) or
O(nblogn), where n is the number of edges of the region
and b is the complezity of describing a spanning tree of
the grid points in a convezr quadrilateral with two hori-
zontal edges.

Sketch: We can construct a horizontal trapezoidiza-
tion of the polygonal region R in linear time (see [2]),
which gives us a partitioning of the vertex set of G ac-
cording to the containing trapezoids. Within each such
trapezoid, the spanning tree for G has a regular struc-
ture, as discussed in Section 2, whose description is of
complexity b. We get the claimed complexity by linking
together these partial spanning trees, and proceeding as
before. O ‘
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We only state without further elaboration that the
methods described above can also be used for finding an
approximation in the case where the mowing object is a
unit disk instead of a unit square. Instead of the cover
by unit squares that is based on the orthogonal grid, we
consider the cover by unit disks based on the hexagonal
grid. (See Figure 9.)

Figure 9: Approximation for the case of a mowing disk.

Theorem 4.5 Let R be a connected region of grass in
the plane, and let N denote the number of hezagonal
lattice pizels that intersect R. Assume that the mowing
object is a unit disk, required to remain aligned with the
coordinate azes. Then in time O(N) one can compute
a lawnmower tour for R whose length is at most 4v/3
times the length of an optimal lawnmower tour.

5 An approximation method for
the Milling Problem

We turn our attention now to the case of milling tours,
in which the cutting tool is required to stay within the
region R that is to be milled. Of course, not all regions
R are millable (while it is true that all regions R can be
mowed).

In this case, our strategy changes slightly, but we are
still able to obtain a constant-factor approximation re-
sult:

Theorem 5.1 In time O(nlogn), one can decide
whether a region with n sides (straight or circular arc)
can be milled by a unit disk or unit square, and, within
the same time bound, one can construct a tour of length
at most 3 times the length of an optimal milling tour.

Proof: (Sketch) In a first step, using a Voronoi dia-
gram of R (in either Euclidean or L, metric), we con-
struct the set B C R of all points within R that are
feasible placements for the center point of the milling
cutter. It is easy to check whether B is connected and
whether each point of the boundary 8B can be reached
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Figure 10: Approximating a milling tour

by placing the center of the milling object in B. (Clearly,
no polygon can be milled by a unit disk and no polygon
with acute angles can be milled by a unit square. For
milling with a unit disk, we need to consider regions R
with curved boundaries, e.g. circular arcs, that have
curvature at most 1.)

Assume B is connected and all points of the boundary
can be reached, so that R can be milled. Then the length
Lap of the boundary 8B of B is a lower bound for length
Lopr of an optimal milling tour. We write Rsp for the
region milled by moving along dB. If R;,: := R\ Rsp is
nonempty, we can cover it by a set of s horizontal strips
S; of vertical width 1 and disjoint interior, as shown in
Figure 10. Since we need at least the length L, =
> i1 Ls; to mill Ris¢, we conclude that Ly < Lopr-

There is a feasible milling tour of length Lsp + 2L:y:
Follow 3 B; whenever encountering a strip that is not yet
milled, include it in the tour by running through it “back
and forth”. (See Figure 10.) We conclude that we get a
milling tour no longer than 3Lopr. O

As before, we can argue that our approximation
method is polynomial in an even stricter sense, if we
take into account that the structure of the constructed
tours is simple enough to allow compact encoding.

6 Further research

It is expected that the approximation factors described
in the previous section can be improved. However, any
approximation method has to deal with the inherent dif-
ficulties of the size of a feasible solution, as we described
in Section 2. This may exclude solutions of a fundamen-
tally different type.

It may be interesting to consider a combination of
the Lawnmower Problem and the Milling Problem: The

complement of the region R is subdivided in parts that
may be crossed by the lawnmower, and “forbidden re-
gions” that may not be touched. (This situation is famil-
iar to anyone who has had to deal with lawn, pavement
and flower beds.)

Another important consideration from a practical
point of view is the shape of a feasible path: If a path
has too many turns, it may require a slower processing
speed, thus spoiling the benefits of a short tour. It seems
worthwhile to examine aspects of the link distance neces-
sary to “mow” a given polygon. Another consideration
of similar type is the size of the angles at turns — see
Held [6]. For a finite set of points, the existence of such
“angle-restricted tours” has been studied by Fekete and
Woeginger [4].
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