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Abstract

Topological Walk is an algorithm that can sweep an arrangement of n lines in O(n?)
time and O(n) space. This paper revisits Topological Walk to give its new interpretation in
contrast with Topological Sweep. We also present several new applications of Topological
Walk to make the distinction clearer.

1 Introduction

Sweeping an arrangement of lines in the plane occurs in various situations in computational geometry.
The most well-known algorithm for this purpose is Topological Sweep[6]. It can sweep an arrangement
of n lines in O(n?) time and O(n) space. Topological Walk[5] is another algorithm that can sweep an
arrangement in optimal time and space. A catalog of problems which can be solved by Topological
Sweep is given in [6]. It was shown in [5] that all of them can be solved by Topological Walk. The most
noteworthy feature of Topological Walk is that it can sweep a part of an arrangement optimally. That
is, given a convex s—gon R and n lines in the plane, it can sweep the arrangement of the lines within
the s—gon R in O(K + (n + s)log(n + s)) time and O(n + s) space, where K is the total number of
intersections of lines within R. Another important feature is that it can find a walk of an arrangement.
Here, a walk is a visit of the cells of an arrangement in such a manner that consecutive cells are adjacent
to each other. Therefore, it is suitable to finding an optimal cell in an arrangement.

In this paper we give a new interpretation of Topological Walk in contrast with Topological Sweep.
We also present several new applications of Topological Walk to make the distinction clearer.

2 A New Interpretation of Topological Walk

2.1 Topological Sweep

Topological Sweep and Topological Walk are both algorithms for sweeping an arrangement of lines in the
plane. As is well known, Topological Sweep uses a monotone curve for the sweep line although a vertical
or horizontal straight line is used as a sweep line in the plane sweep method. The most important
operation in Topological Sweep is an elementary step which exchanges order of two consecutive lines at
their intersection. Thus, how to find a next intersection at which an elementary step is carried out is
crucial for efficient implementation. For this purpose two horizon trees are defined: Upper and lower
horizon trees. When two lines intersect in an upper horizon tree, one with larger slope is extended to the
right while one with smaller slope is extended to the right in a lower horizon tree. The next intersection
at which an elementary step is done is the place at which two leaf branches meet in both of the trees.
Therefore, it is not so easy to characterize the order of such intersections.

2.2 Topological Walk in an entire arrangement

Topological Walk sweeps an arrangement in a totally different manner. To have conceptual understand-
ing we shall imagine a graph representation of an arrangement of lines in the plane. For the time being
we assume that there is no degeneracy, that is, no three lines meet at one point. We further assume
without loss of generality that there is no vertical line. In addition to given lines we add an almost
vertical line Lo, with slope larger than that of any given line at positive infinity. Note that every line
intersects the line L. We cut off each line at the intersection and remove the portion to the right of
the intersection. The vertices of the graph are intersections of lines and the leftmost endpoints of lines
at negative infinity plus the right endpoint of L, at positive infinity.
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Figure 1: Depth-first search simulating the behavior of Topological Walk.

Then, each intersection is characterized by a pair of lines. We split each intersection into two vertices,
one incident only to the edge going down to the right, and the other connecting to the remaining three
edges. Notice that the above splitting operation is done at each intersection except for the intersections
with the rightmost line L.

It is not so hard to see that the resulting graph is a tree rooted at the topmost vertex of the rightmost
line L. Since it is a tree, we can implement depth-first search on the tree with right branch preferred
at each vertex (intersection). This completely specifies the order of vertices to be visited. Topological
Walk visits the vertices in this order. However, if we construct the graph structure in an explicit manner,
it takes O(n?) space, which is too expensive in many cases. Thus, we implement the depth-first search
while updating the tree.

Figure 1 illustrates how the depth-first search is executed on the tree.

We start with the initial upper horizon tree which takes only O(n) space. It is constructed as follows.
First of all we sort the lines in the decreasing order of their slopes. Let it be (Lo, L1, L2, ..., L, ). For
simplicity we assume that no two lines have the same slope although this assumption can be easily
removed. This assumption implies that this order on slopes coincides with the vertical order of the lines
at negative infinity. Then, we draw the line L, at positive infinity. After that we add lines in the above
order one by one. That is, we draw each line from the left infinity to the right until the first intersection.
When we add a line L;, we trace the current upper horizon tree toward the root starting from the left
endpoint of the line L;_, just added until we encounter the edge intersecting the line L;.

After constructing the initial upper horizon tree, we start the depth-first search on the tree with
right branch preferred. When we reach a vertex incident to two leaf vertices, we execute the elementary
step and update the cut (the vertical order of lines intersecting the vertically monotone sweep line).
This is just the same as Topological Sweep.

Another important difference of Topological Walk from Topological Sweep is that we can maintain
information associated with cells in the arrangement. Since Topological Sweep is based on cuts, it can
maintain only O(1) information for each cell to keep the total space complexity O(n). On the other’
hand, Topological Walk visits cells one by one in consecutive manner (i.e., always from one cell to its
adjacent cell). Thus, it can use up to O(n) space at a cell currently visited while keeping the total space
linear.

2.3 Topological Walk in a part of an arrangement

As far as an entire arrangement is swept, the difference between Topological Sweep and Topological
Walk is not so essential. However, it does not seem that Topological Sweep can be adapted so as
to sweep a part of an arrangement in optimal time and space. As was shown in (5], given a convex
polygon R and an arrangement, Topological Walk can sweep the arrangement within the polygon R in
O(K + (n + s)log(n + s)) time and O(n + s) space, where K and s are the number of intersections
within R and that of vertices of R. It is not so straightforward to achieve the bound. When we execute



Figure 2: Extended elementary step — degenerate case.

an elementary step at an intersection v, we delete two edges incident to v from the left and extend the
upper left edge ¢ to the right until it encounters an edge of the tree. To find such an edge, Topological
Sweep performs one-directional search from the edge located in the next place of e in the current cut.
However, as was shown in [5], one-directional search is not sufficient to achieve the above-described
bound. This is why bi-directional search is incorporated in Topological Walk.

3 Degeneracy

Degeneracy causes a big trouble for Topological Sweep. Recall that in Topological Sweep to find the
next intersection at which an elementary step is executed we had to examine the two horizon trees to
find a pair of lines that define twigs (vertices incident to two leaf branches) in both of the trees. If we
maintain all the twigs as ordered pairs of lines (ordered by, say, slopes) in a table, we can determine in
O(1) time whether a twig in one horizon tree is also a twig in the other horizon tree. However, if we
have degeneracy, such a check cannot be done in constant time. This is the difficulty.

On the other hand, Topological Walk can easily admit degeneracy without complicated trick. Our
approach is not to use perturbation but directly to deal with degenerate inputs, like one in {10]. A data
structure required for this purpose is very simple. We just maintain a set of edges incident to a vertex
in an upper horizon tree by a list of edges in counter-clock wise manner starting from the edge incident
to v from the right (note that there is only one such edge). Depth-first search is carried out with right
edges preferred as before. When we reach such a vertex v that all the edges incident to v from the left
are leaf edges, we execute an extended elementary step. Let the list of edges be (eo, ey, ...,exr) where
eg is the edge incident to v from the right and the remaining edges are ordered in counter-clock wise
manner. Then, we delete the edges e, ..., e} and extend them except for e; in this order. When we add
e; we start from the edge located in the next position of e; in the current cut to find the intersecting
edge in the current horizon tree. For e;,7 = 2,3, ...,k — 1 we can start from the extension of e;_; which
has been just added. See Figure 2.

4 Applications

Since the topological walk can sweep a part of an arrangement in an input sensitive manner, it is an
efficient paradigm for almost all the problems solved by sweep methods. A catalog of applications
of topological sweep is given in [6]. All of those applications — computing a longest monotone path,
computing a longest monotone concave path, computing largest convex subsets, computing a largest
empty convex subsets, finding a maximal stabbing line, computing minimum area triangle, and visibility
problems — can be solved by using topological walk.

The following is a typical application of sweeping a part of arrangement:



4.1 Finding a max-weight cut line of a straight line graph

We consider a graph G embedded in a plane as a straight-line graph. The vertex set is a set V' of points
in the plane, and each edge e = e(u,v) is a straight line segment between u and v. We assign a weight
w(e) for each edge e. The cardinality of vertices and edges is denoted by n and m respectively. We
also consider two subsets S; and S, of V. We assume that S; and S, are separable from each other
by a straight line. We would like to find a line, a mazimum cut line I, which separates S; and S and
maximizes the summation of weights of edges of G by [ .

The dual set of the set of separating lines of S; and Sz becomes a convex polygon R, which has less
than or equal to s = |S;| + |S2| corners. The dual lines of V makes an arrangement in R, which has K
cells. Thus, the problem can be solved by using the topological walk.

Theorem 4.1 A Mazimum cut line is found in O(K + m + nlogn + slogs) time and O(n +m + s)
space.

Proof The proof is given in [4]. a

A similar problem occurs in the design of divide-and-conquer algorithms for the VLSI routing
problem, in which S;, S, and V are sets of modules, and G is the net graph of the modules in V. The
weights of edges represent the connectivity between modules. There, minimum cut line is needed under
the condition that it subdivides V into almost evenly sized sets. See [4] for detail.

4.2 Space efficient optimal cell searching

We consider a cost function f = f(r) associated with the arrangement, and search for the cell with the
optimal cost. We assume a dynamic algorithm to compute f(r) exists. The following is the situation:
We consider a dynamic data structure Data(r) from which we calculate f(r). We need T time to
construct Data(r), and I space to store it. Moreover, we can dynamically obtain Data(r) and compute
f(r) in U time, if we know both Data(r’) and f(r’) for an adjacent cell r’. The updating time U is
small compared with T. Typically, imagine the case T = O(n),I = O(n®) (0 < a < 1), and U = O(1).

If we compute f(r) along a walk of length M updating the dynamic data, we can obtain the cell
with an optimal cost in O(MU + T') time. Thus, applying topological walk, we obtain the following
theorem:

Theorem 4.2 W can find the optimal value of the cost function and its associated cell in O(nlog(n +
s)+ KU +T) time and O(n + s + I) space.

Let us compare the topological walk with other paradigms. If we construct the arrangement and
walk on it in the usual fashion, we need O(nlogn + KU + T) time and O(K + I) space (we omit the
terms containing s for simplicity.) The plane sweep method needs O(nlogn + K{logn + U} + T') time
and O(nI) space. The usual topological sweep needs O(n? + KU + T') time and O(n + I) space. Thus,
the topological walk is always advantageous compared to each of these paradigms. One typical example
of the application of topological walk to such a problem is shown in [5]. We show another one in the
following.

4.3 Maximal set of intersecting polygons

Consider the following problem: Suppose we are given n convex (possibly open) polygons Py, P, ..., P,
in the plane. We assume that the total number N of edges of the polygons is O(n). We would like to
find all maximal subsets of polygons with non-empty intersections. This problem is the key subroutine
for extracting curve images in digital images [1]; Typically, each polygon is a slab defined by a pair of
parallel lines if we consider the problem of extracting line images.

The defining lines of the edges of the polygons partition the plane into cells. Each cell c is associated
with a set H(c) of polygons containing it. Topological Walk can compute all cells associated with
maximal subsets of polygons in O(n?) time and O(n) working space.

The key point is that, we only need to maintain the cuts and one cell for the Topological walk.
Therefore, although we store O(n) information in the cell maintained in the algorithm, the total space
complexity remains O(n). Such a space-efficient implementation seems to be difficult for Topological
Sweep, since one must keep O(n) cells for each of which O(n) information should be stored.
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4.4 Linear approximation of multiple point sets

Let S; be sets of n; points for: = 1,2,...,b. § = Uﬁ’___lS,- and n = Zi-’:l n;. We would like to find a line
I, which approximates all S; simultaneously.

First, we consider a discrete cost function. For a line !, N;(l) is the absolute value for the difference
between the number of points located above ! and that of points below ! in S Consider N(l) =
Y2_, IN:(1)], and find a line which minimizes N ).

If b = 2, there is a line [ called the ham-sandwich cut which satisfies N(I) = 0, and an efficient
O(nlogn) time algorithm is known [9]. However, if b > 3, N(I) may be always positive. No subquadratic
algorithm is known for finding an optimal /, and we solve it by searching over the arrangement .A(D(S))
generated by the dual lines of points of S. Naturally, N;(I) = N;(!') if D(!) and D(I') are in the same cell
r of A(D(S)) for i = 1,2,...,b. Thus, choosing an arbitrary dual point D(!) in r, we can define Data(r)
consisting of the list (Ny(1), N2(1),..., No(1)) and N(1).

Thus, the situation is:

1. Each cell r of the arrangement is associated with the data Data(r) of O(b) space.

2. N(r) is computed in O(n) time statistically.

3. Data(r) is given in O(1) time from Data(r’) of a cell ' adjacent to r.

Thus, usual sweep line method needs O(nb) space and O(n?logn) time. Naive topological sweep
needs O(nb) space and O(n?) time. By applying topological walk, we obtain the following theorem.

Theorem 4.3 An optimal line | is found in O(n?) time and O(n) space.

An optimal line with respect to the above discrete function need not be a good approximation of
the point sets. Thus, let us consider a continuous function. For aline!:y = I(z) = az + 3 and a
point po = (Zo, ¥o), the vertical distance between ! and py is d(I,po) = |azo + B — yo|. We consider the
function f;(1) = EpES d(l,p) and f(l) = max;=1,2,...q fi({).

We would like to find an ! which minimizes f(I). Yamamoto et al[11] dealt with the problem when
b =1, where, since f(!) becomes a convex function, a prune and search [8] is applicable and a linear time
algorithm is given. However, if b is large, it seems that the topological walk gives an efficient algorithm.
We define functions Fi(z) = f;(D(z)) on the dual plane. Let 7 be a cell in A(H(S)). Then, Fi(z) is
a linear function of the closure of r. We denote Fi(r) (z) for this linear function extended to the entire
plane. F(")(z) = maxi=1,2,..» Ff”(z) is the convex function, which coincides with F(z) = f(F(z)) on
T.

The minimal value m(r) of F(")(z) is taken at a point p(r), which is not necessarily located in r.
For an edge e of 7, the maximal value m"(e) of F(")(z) on the line containing the edge e is taken at a
point p"(e). If v’ and r re cells incident to e, it is easily seen that m'(e) = m" (e) and p"(e) = p” (e).
Therefore, we write m(e) and p(e) for m"(e) and p"(e) respectively. The following lemma comes from
the convexity:

Lemma 4.4 In r, the mazimal value of F(z) is taken at p(r) if p(r) is located on r, else it is taken on
an edge of r.

It needs O(n) time to construct the set of functions F,-(') (z), (¢ = 1,2,...,b) for a cell 7, where
n= 2?:1 n;. However, we can construct them from the set of functions Fi(" )(a:) fori=1,2,...,bfor an

adjacent cell 7’ to r in O(1) time from F( ™) If we know the functions F( ™ (z) for i = 1,2,...,b, we can
compute (p(r), m(r)) and (p(e), m(e)) for each r and e in O(b) time by using the Meggido’s method (8]

Now, we apply the walk on A(H(S)) to solve the problem. When we visit a new region r, we
compute (p(r), m(r)). We remark that we, at this stage, do not decide whether p(r) is located in 7 or
not. However, when we walk on an edge e bounding a region r, we judge whether p(r) is on the same
side as r with respect to e; If not, we reset m(r) to oco.

When we apply an elementary step at a vertex v, we compute (p(e), m(e)) for each outgoing edge
from v. We store it until we apply an elementary step at the right endpoint of e. Suppose we come to
a vertex v, whose left region is 7 and incoming edges are e and €’ to apply an elementary step.

We have (p(e) m(e)), (p(e’),m(e")), (p(r),m(r)), and the current minimum M of F(z). If p(e)
(resp. p(e’)) is not located on e (resp. e), we set it to co. Then, we replace M by the minimum of
M, m(e), m(e’) and m(r), and erase other information. In this way, we can obtain the optimal point
(the dual point to the optimal line) in O(bn?) time and O(n) space.



Theorem 4.5 We can obtain the optimal approzimation line for b sets of points in O(bn?) time and
O(n) space, where n is the sum of the number of points in the point sets.

Finally, we show that the search on clipped arrangement is also useful in this problem. Assume
we can add a condition that the approximating line y = l(z) must satisfy that A; < I(§;) < p; for
given real numbers §;, Aj, pu; for j = 1,2,...,s. Let us consider the dual line L; of the point (¢;,A;)
and M; of (§;, ;). The intersection R of all the upper half planes ‘L}' and lower hyperplanes M, for
J =1,2,...,s is a convex region. Then, under above condition, we can find the optimal approximating
line by searching on A(H(S); R). The algorithm needs only O((n + s)logn + bK') time, where K is the
number of vertices in A(H(S); R).

4.5 Partial construction of an arrangement

It is shown in [2] that Topological Walk can construct at-most-k levels of an arrangement of n lines in
the plane in time O(nk + nlogn) which is optimal since 2(nk) line segments are included there. This
slightly improves the result by Everett et al. [7] in the space complexity.

5 Concluding Remarks

In this paper we have presented a new interpretation of Topological Walk Algorithm(5] in contrast with
Topological Sweep Algorithm[6] together with a new catalog of applications. We have also described a
positive treatment of degeneracy. Implementation of the algorithm is easy since no complicated data
structure is needed.
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