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EXTENDED ABSTRACT

Abstract. Given a dynamic set S of n colored points in the plane. In the all-nearest-foreign-neighbors problem (ANFN
problem) one has to find for each point in S a nearest neighbor with a different color. We describe a distribution technique
which reduces the ANFN problem to a number of bichromatic ANFN problems which can be solved in a total worst case
time of O(nlogn). In this paper we present two simple algorithms based on the distribution technique which solve the
ANFN problem with respect to an arbitrary L*-metric in optimal O(n logn) time and O(n) space.

1 Solving the ANFN problem by distribution
In this paper we consider the all-nearest-foreign-neighbors (ANFN) problem which is defined as follows:

Given a finite set S of points in the plane R?, |S| =n, S = U;,S; with S;NS;=0fori,j € {1,...,N},i#j,
and a fixed L*-metric d; (1 < ¢ < 00). For each i € {1,..., M} and each p € S; determine a point g € S\ S; with

di(p,q) = min{d,(p,7) : 7 € S\ Si}.

We assign each of the sets S; a unique color and reformulate the problem as follows: Determine for each point p € S a
nearest neighbor in S having a color different from p’s color ¢(p). Q(nlogn) is a lower bound for the ANFN problem in the
algebraic decision tree model of computation ([1, 2]).

In this section we present a distribution mechanism which can be used to solve the ANFN problem with respect to an
arbitrary Minkowski-metric. The method reduces the ANFN problem for the given configuration to a number of bichromatic
ANFN problems such that the total time needed to solve these problems does not exceed the optimal time bound O(nlogn).
Our algorithms for the ANFN problem are based on this distribution technique. [1] describe an algorithm for the Euclidean
ANFN problem which uses a similar distribution mechanism.

Each set S; is assigned an initially empty candidate set C;. The points in S are distributed among the candidate sets,
i.e. each point is assigned to some of the candidate sets such that the total number of points contained in the candidate sets
is linear, i.e. 3 i, |Ci| € O(n). After the distribution process a nearest foreign neighbor of a point is found in the candidate
set of its color. Hence the ANFN problem for S has been reduced to the problem of finding nearest neighbors for the points
in S; among the points in C;. This can be interpreted as a bichromatic ANFN problem for the set S; U C; where nearest
foreign neighbors have to be computed only for the points in S;.

The bichromatic ANFN problem for a set S; and its candidate set C; can be solved by the algorithm [3] which also works
for arbitrary L*-metrics in

m

Y O((ICil + 1Sil) log |Ci| + 1S:|log [S:]) = O(nlogn)

i=1
time and linear space ([3]). In this paper we present two algorithms for distributing the points among the candidate sets in
O(nlogn) time and linear space. The analysis of our algorithms is fairly straightforward, and we therefore omit details.

2 The first distribution algorithm

In a preprocessing step we use the algorithm [2] to solve the L*-ANFN problem for S. This preprocessing step requires
O(nlogn) time and returns a L>-nearest foreign neighbor $ of each point p € S.

The algorithm performs four sweeps: a left-to-right, a right-to-left, a top-to-bottom, and a bottom-to-top sweep. We will
show that if a nearest foreign neighbor ¢ of p is contained in QL(p) := {r|r.z < px A |py —ry| < |p.z - r.z|} then ¢ will
be inserted into C,(;) during the left-to-right sweep. Together with similar arguments for the three remaining sweeps and
the corresponding quadrants this ensures the correctness of the algorithm. It therefore suffices to describe the left-to-right
sweep.

Fix a point p € S. Let pi,...,ps be the points which we obtain by mirroring the point 5 cyclically along the diagonals
(with slopes +1) and the horizontal and vertical lines through p (see Figure 1). We will use these points to select a set of
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points to be considered when processing the insertion event of p. In the left-to-right sweep we only use the points p; and pa,
the other points ps,...,ps are used in the other sweeps analogously.

An insertion event for p € S has to be processed when the sweep-line reaches p. Insertion events which coincide in space
can be processed in arbitrary order. To process an insertion event we do the following: First insert p into the sweep-line
structure SLS. Then we have to find the nearest foreign neighbor candidates of p lying in QL(p).

\ Ky (p,5)(P)

Figure 1. Points py, ..., ps and region R, C QL(p) which may contain nearest foreign neigbors of p

Lemma 2.1 restricts the area where to search for nearest foreign neighbors of p with a distance to p strictly smaller than

d:(p, p):

Lemma 2.1. Nearest foreign neighbors of p in QL(p) with di(p, q) < di(p,D) are contained in the region Ry := {(z,y)|z <
PL.T,p2.y <Y < pr.y}.

Proof: There is no nearest foreign neighbor of p in QL(p) with a z-coordinate greater than p,.z = p,.z. Since the Lt-circle
Ka,(p,5)(P) With center p and radius d:(p, ) does not intersect the north-west quadrant Q; := {(z,y)|z < p1.z,y > p Yy}
of p1 and the south-west quadrant Q; := {(z,y)|z < p2.z,y < p2.y} of p this completes the proof. Figure 1 gives an
illustration for the Euclidean metric.

Denote by QLa(p) := {r € QL(p)|r.y > p.y} and QLs(p) := {r € QL(p)|r.y < p.y}. SLS consists of two components
SLS, and SLS} each of which holds a set of points and is implemented by a quadrant priority search tree ([2]) choosing
appropriate keys. When a point p is encountered by the sweep-line p is inserted into both SLS, and SLS,. Then we remove
from SLS, the points contained in R, N QLq(p) and from SLS, the points in R, N SLS, and add all of these points which
have a different color than c(p) to the candidate set C,(y).

2.1 Correctness
As above we restrict ourselves to the left-to-right sweep and the case that a nearest foreign neighbor q of p is contained in
QL(p). Before we prove that ¢ will become a member of Cqp) We give two lemmas:

Lemma 2.2. Letr,q € IR? such that q € QLq(r) and r.y # q.y. Then the half-line h starting at point (r.z,ry+r.oc — q.T)
with slope +1 is part of the L™ -bisector Boo(q,7) for £ > r.z. For 1 <t < oo the L*-bisector B,(q,r) extends for z > r.x
above h.

Proof: Since L*-bisectors are invariant under translations we may assume that g.z = 0 and ry=0.

Figure 2: Extension of Lf-bisectors for z > r.z
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For points u = (7,7) on the diagonal y(z) = z with > r.z we have doo(%,q) = 17 = doo(u,7) which proves the first part
of the lemma. Fix an arbitrary 1 <t < co. The bisector B(r,q) is given in implicit form by
Bi(r,q): B(zy)=lr—qzl'+ly—qyl' ~|z—rzl' - [y-ry/°=0

Since q.y < r.z an easy computation shows that B(n,n) > 0 for all 5 > r.z which implies that for £ > r.z the halfline & is
on the same side of B:(r,q) as r. Hence B:(r,q) extends above h.

Lemma 2.3. Let p,q,r € R? such that q € QLa(p) N QLy(r) and r.x < px. Then for all 1 < t < o0 we have
d:(p,7) < de(p,q).

Proof: Again we may assume that .z = 0 and r.y = 0. If q.y = r.y then the vertical line crossing point ( %(r.:c +4¢.2),q.y)
is part of the bisector B:(qg,7) ([4]) which implies that di(p,r) < de(p,q). We may therefore assume in the following that
gy > r.y. The L'-bisector is a function which is non-decreasing ([4]) since |q.z — r.z| <lgy—ryl

[~
k- ----o--

Figure 3: Point q cannot be nearest neighbor of p
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By Lemma 2.2 the part of the bisector B:(r, q) to the right of .z extends above the half-line 4 which for z > r.z falls onto
the diagonal y(z) = z. Since ¢ € QL4(p) and q.y > r.y this implies that for z > r.z the bisector By(r, q) extends above q.y
and strictly above q.y for z > r.z. By the condition ¢ € QL,(p) we have q.y > p.y. Hence p is on the same side of B,(gq,r)

as r which completes the proof. '

Now fix an arbitrary point p € S. W.l.o.g. we assume that a nearest foreign neighbor g of p is contained in QL,(p). Let
q be chosen such that |[p.z — ¢.z| is minimal. If d;(p,q) = di(p,5) a nearest foreign neighbor of p has already been found
during the preprocessing step and nothing remains to be shown. We therefore assume that d:(p,q) < di(p, D).
If ¢ has not yet been removed from SLS, when the insertion event for p is processed then q is inserted into Cep) by con-
struction, if ¢ has already been removed from SLS, then Theorem 2.4 guarantees that q has been inserted into the candidate

set Cc(p) .

Theorem 2.4. Let q be a nearest foreign neighbor of p in QL(p) such that |p.z — q.z| is minimal. If q has been removed
from SLS, before the insertion event of p is processed then q has already been inserted into Cep)-

Proof: The assumption that g has already been removed from SLS, implies that there exists a point r € S which has been
processed before p, i.e. for which r.z < p.z, such that ¢ € QL,(r) and ¢ has been removed from SLS, when processing r. If
¢(p) = ¢(r) then ¢ has been inserted into Cc(p)- We may therefore assume that ¢(p) # c(r).

The points p, g, r satisfy the conditions of Lemma 2.3 which implies that de(p,7) < de(p,q). If px = r.z then di(p.r) =
do(p,7) 2 de(p,p) and di(p,q) < deo(p,$) by assumption which implies de(p,7) > di(p,q). This leads to a contradiction
since either |p.y — q.y| > [py —r.yl if r.y > py or [pz — q.z| > |py — ry| if .y < p.y. .

Hence we may assume p.z > r.z. In this case Lemma 2.3 shows that di(p,) < di(p, q) which is a contradiction to the choice

of q. This completes the proof.

3 The second distribution algorithm

The sweep algorithm in section 2 determines for each point p the candidates among which we have to search for the nearest
foreign neighbors of p. For the algorithm presented in this section we take a different approach: Determine for each point p
the candidate points which may have p as nearest foreign neighbor.

This algorithm also performs four sweeps: a left-to-right, a right-to-left, a top-to-bottom, and a bottom-to-top sweep. During
a sweep we maintain for each p € S the minimal distance §(p) between p and a nearest foreign neighbor found so far. We
initialize 6(p) with oo.

We will show that if there exists a nearest foreign neighbor p of q € QL(p) then after the left-to-right sweep either 5(q) =
di(p, q) or p has been inserted into the candidate set Ce(q)- Together with similar arguments for the three remaining sweeps
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and the corresponding quadrants this ensures the correctness of the algorithm. It therefore suffices to describe the left-to-right
sweep.

Among the points which have already been encountered by the sweep-line a point p is called active if p.z + 6(p) is to the
right of the sweep-line, otherwise the point p is called deactivated. The active points are exactly those of the points seen so
far which may have a nearest foreign neighbor among the points to the right of the sweep-line. During the sweep we maintain
the following sweep-invariant:

The y-table stores the active points w.r.t. their y-coordinate and their color.

Note that the y-table may contain more than one point with the same y-coordinate and the same color. Therefore the
y-table stores the active points lexicographically.

There are two types of events: insertions and deletions: An insertion event for p € S has to be processed when the
sweep-line reaches p. Insertion events which coincide in space can be processed in an arbitrary order. A deletion event for a
point p contained in the y-table has to be processed when p.x + §(x) is at or to the left of the sweep-line. This may happen
either if the sweep-line proceeds to the right or the §-value of p becomes smaller.

Let the operation succ — col(p) (pred — col(p)) return the successor (resp. the predecessor) of p in the y-table with a color
different from c(p). These operations can be performed in O(logn) time by implementing the y-table as a colored balanced
binary search tree (see section 4).

A deletion event of a point p is processed by removing p from the y-table. An insertion event of p is processed by first
inserting p into the y-table. Then we search for those points g which can have p as nearest foreign neighbor by determining
the following two points

T := col — succ(p) 8 := col — succ(r)

We compute intermediate distances of the points p, r and s and update their §-values. We maintain the sweep invariant by
removing those points of {r, s} from the y-table that are no longer active, i.e. we process deactivation events if necessary.
We continue this process until either both points r and s remain active or at least one of them is the nil-point. After the
process has stopped we insert the point p into the set Ce(,) (resp. Co(,)) if the points 7 (resp. s) is non-nil. Note that by
the definition of col — succ() we have ¢(r) # c(s). The predecessor points of p in the y-table are processed analogously. The
sweep is complete after all insertion events have been processed.

3.1 Correctness

- We have to show that the algorithm computes for all points a nearest foreign neighbor directly, or the distribution pro-
cess guarantees that we find a nearest foreign neighbor when solving the bichromatic ANFN problems for the sets S; U C;.
W.l.o.g. we restrict ourselves to the left-to-right sweep. The correctness follows from Theorem 3.1:

Theorem 3.1. Let q be a point for which p is a nearest foreign neighbor such that g € QL(p). After processing the insertion
event of p either we have §(q) = di(p,q) or p has been inserted into the candidate set Cyg).

Proof: W.lo.g. we may assume that q.y > p.y. Consider the moment immediately after inserting the new point p into the
y-table. If §(q) = d¢(p,q) then a nearest foreign neighbor of ¢ has already been found and nothing remains to be shown. We
therefore assume that §(q) > di(p,q). This implies ¢q.z + 6(q) > q.z + di(p,q) > p.x since q € QL(p) which shows that q is
still active and therefore contained in the y-table.

If at any time during the examination of the successor points of p either of the points r or s equals g nothing remains to
be shown since then p has been found as a nearest foreign neighbor of ¢ and §(g) = di(p,q). We therefore assume that this
never happens during the process and that after the process has finished neither r nor s is the point gq. Of course r is not the
nikpoint and is below g, i.e. 7.y < q.y. Therefore p is inserted into the set Ce(). If c¢(r) = c(g) this completes the proof. We
therefore assume ¢(r) # c(q). This implies that s cannot be the nil-point and s is below ¢, i.e. s.y < ¢q.y. Again, if ¢(s) = ¢(q)
then the point p is inserted into the set C.(,) and the theorem follows. Hence we additionally assume that c(s) # c(q).

This leads to a contradiction: Since p is a nearest foreign neighbor of ¢ the rectangle

R:={(z,y): |z —q.z| < |gz—pz|ApYy <y <qy}
which is part of the L*-circle with center ¢ and radius d;(p,q) cannot contain points of S with a color different from c(q).
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Figure 4: If ¢(r) # c(q) # ¢(s) then r and s are outside of R

This shows that r and s are outside the rectangle R. But then an easy computation shows that
min{r.z, 8.z} + d¢(r, s) < min{r.z, s.z} + di(r,s) < max{r.z,s.z} + [py —qyl < pz

which implies that at least one of the points r or s has already been deactivated. This is a contradiciton since r and s are
assumed to be active which completes the proof.

4 Coloring a binary search tree

In section 3 we use a colored balanced binary search tree to implement the y-table in order to perform the operations col-pred
and col-succ in logarithmic time. In this section we extend any arbitrary (not necessarily balanced) binary search tree
structure to the colored binary search tree (CBST).

For a node k of a binary search tree T we denote by T'(k) the subtree of T rooted by k and by LST(k) and RST(k) the
left respectively right subtree of k. The key-values of all nodes in LST'(k) are equal to or smaller than the key-value of k
which itself is smaller than any key-value of a node in RST(k).

The CBST which is based on a binary search tree stores colored elements with respect to their key-value and supports
the following extended query operations: When searching for the predecessor (respectively successor) of an element the
CBST allows to restrict the search to those elements which do not have a certain forbidden color; these elements are called
admissible. The operations supported by the CBST are the following:

1. insert(e): Insert the element e into the CBST.

2. delete(e): Delete the element e from the CBST.

3. ad — pred(e,c): Return the admissible predecessor of e in the CBST where c¢ is the forbidden color.
4. ad — succ(e, c): Return the admissible successor of e in the CBST where c is the forbidden color.

The operations col-pred and col-succ in section 3 can be realized by choosing the query element’s color as forbidden color in
the query operations ad-pred and ad-succ, respectively. In the following we extend the domain of the color function ¢() to
the nodes of the CBST, i.e. each node of the CBST inherits the color from the element it stores.

We call a subtree T of the CBST homogeneous, if all elements stored in T have the same color. In each node & we store:
Hom(k) = true iff T(k) is homogeneous with color c(k).

The Hom()-information can be maintained in optimal ©(h(n)) time (h(n) denotes the height of the underlying binary search
tree) during an insertion operation and a bottom-up walk after a deletion operation. In the special case that all key values
are known in advance we can use a skeleton tree to avoid rebalancing and achieve an optimal update time of O(log n): Build
a complete binary search tree for the key-values. This is the skeleton which is filled dynamically during the sequence of
insertions and deletions. This is the case in our application to the ANFN problem presented in section 3. For details about
skeleton structures see e.g. [5]. However, it is easy to see that the Hom()-information can also be maintained in balanced
trees during rebalancing operations in optimal time.

It remains to show how to perform the operations ad — pred(e,c) and ad — succ(e, c) for an element e and a forbidden
color c. These two operations do not differ in principle and we therefore restrict ourselves to the description of the operation
ad — pred(e,c):

Call an element stored in the CBST proper (with respect to e) if its key-value is smaller than the key-value of e. Now
ad — pred(e, c) asks for the admissible proper element with largest key-value, i.e. the admissible predecessor of e. First
perform a binary search for the node k, which stores the element e by walking a path K := {r = k,,...,k,} from the root
7 of the CBST to the node k,. During the walk consider all elements stored along K. It is easy to verlfy that if the path
branches off to the left in k; € K then the nodes in RST'(k;) need not be considered. Furthermore it is easy to see that the
admissible predecessor is either stored in a node k., of path K or in LST(k;) of a node k; € K such that ki, € RST(k;)
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and LST(k;) is not homogeneous w.r.t. the forbidden color ¢. Hence we consider these subtrees bottom-up stopping as soon
as the first admissible proper element has been found. Finding the admissible predecessor in a subtree T(k) can be done
as follows: If RST'(k) is not empty and is not homogeneous w.r.t. the color ¢ then RST (k) contains at least one admissible
proper element and we continue the search in the right son node of k. If either RST(k) is empty or is homogeneous w.r.t. the
color ¢ then we proceed as follows: If the color of the element stored in & is ¢ and LST(k) is not homogeneous w.r.t. color ¢

then we continue in LST(k).
The process stops if we drop out of the tree (i.e. after processing a leaf node), if we cannot continue in RST'(k) and k stores

an admissible element, or if we cannot choose a subtree which is not homogeneous w.r.t. the color c.

A straightforward analysis shows that coloring a binary search tree does not increase the asymptotic time complexities
of the operations of the underlying binary search tree.
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