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1 Introduction

The link distance between two points is a
measure of the minimum number of turns nec-
essary to navigate from one point to another in
the presence of obstacles. Minimum link paths
in polygons, where the boundary of the poly-
gon represents the obstacles, were extensively
investigated by Suri [Sur87]. Suri motivated
the problems by the desire to minimize the cost
of turning in areas such as in motion planning
where the cost of turning a robot is relatively
high compared to traveling in a straight line; in
broadcasting type problems, where it requires
some type of relay to turn a signal; and in the
Space Factory Problem where, again, turning
requires more energy than moving in a straight
line.

Suri also considered the link diameter prob-
lem: finding the maximum number of segments
in any minimum link path of a given polygon.
The diameter is of interest because it provides
a measure of the geometric complexity of the
polygon. Suri [Sur87] gave an O(nlogn) time
O(n) space algorithm for computing the link

diameter of a simple polygon. de Berg [dB91]
considered the orthogonal version of the prob-
lem in which all line segments are axis-parallel
and gave a straightforward divide and conquer
algorithm with the same time complexity. Nils-
son and Schuierer [NS91b] improved this and
gave the first optimal algorithm for the diame-
ter problem on a non-trivial class of polygons.

As mentioned above, the diameter is of in-
terest since it provides a measure of geomet-
ric complexity of the polygon. Nilsson and
Schuierer [NS91b] suggest that the link diame-
ter gives a classification on the amount of wind-
ing in the polygon. Although the link diame-
ter does provide a measure of turns, it can be
artificially inflated without changing the gen-
eral shape of the polygon. The link diame-
ter does not provide information about the no-
tion of winding of a polygon in the sense given
by Chazelle and Incerpi [CI83] (sinuosity) or
Sack [DS85] (winding). The dent diameter
of a polygon provides more information than
the link diameter about the shape complexity
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Figure 1: The polygon on the left has a link diameter of 7, a staircase diameter of 4. and a dent
diameter of 5. The polygon on the right has a has a link diameter of 11, a staircase diameter of

6, and a dent diameter of 6.

of the polygon since it is a measure of the type
of turning required.

Wood and Yamamoto [WY93], introduced
the notion of dent distance, or visibility, and
gave algorithms for efficiently solving some
dent visibility problems. One of the mo-
tivations for studying dent distance is that
it can provide more geometric information
than the link distance function. In this pa-
per, we continue the investigation of dent and
staircase visibility and provide an algorithm
for computing the dent diameter of a poly-
gon based upon the algorithm given by de
Berg [dB91] (the staircase diameter may also
be solved in an analogous manner). Unfortu-
nately, the geometric properties used by Nils-
son and Schuierer [NS91b] to optimize the link
algorithm cannot be applied directly to obtain
an optimal dent diameter algorithm.

First, we review the notion of dent length
and the divide and conquer approach for link
diameter used by de Berg [dB91] and Nilsson
and Schuierer [NS91b]. We then outline the
results required to show that the general di-
ameter algorithm may be applied to the dent
diameter problem to compute the diameter in
O(nlogn) time.

2 Dent distance

In a simple orthogonal polygon, a dent edge
is any edge with two reflex vertices. The notion
of a dent in restricted orientation polygons was
used by Culberson and Reckhow [CR89] and
Bremmer and Shermer [BS92] in the solution to
some minimal covering problems. The former

used the notion of dents to characterize poly-
gons for which a solution could be computed.

We adopt the convention that the polygon
is labeled in a clockwise orientation; hence,
an alternate definition for a dent edge is an
edge with two left turns. Wood and Ya-
mamoto [WY93] extended the notion of a dent
in a polygon to a dent in a path. In this case,
a dent segment is a segment of the path such
that its vertices are both right turning or both
left turning.

The dent length of a path is the number
of dent segments in the path. We define the
orthogonal dent distance, or simply dent
distance, of two points as the minimum dent
length over all orthogonal paths connecting the
two points. An orthogonal staircase path,
or simply staircase, is an orthogonal path such
that the path is monotone with respect to the
axes [SRW91]. We define the staircase length
of a path as the minimum number of staircases
joined at their endpoints which decompose the
path. We define the staircase distance of a
path between two points as the minimum stair-
case length over all orthogonal paths between
the two points.

Except for 0-dent and 1-staircase length
paths, the dent-length and staircase-length of
a path are, in general, not equal. Note that
there may be one or two dents in between two
consecutive staircases. There are two dents if
the staircases are oppositely oriented; other-
wise there is just one dent. In Figure 1 the
general shape of the two polygons is the same.
However, we can refine the edges of the poly-
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gon with shorter and shorter segments, artifi-
cially inflating the link diameter as high as we
want. The difference between the staircase and
link diameters in the polygons above is due to
the fact that we add a new turn which consists
of two oppositely oriented staircases; however,
further edge refinement would not increase the
dent diameter value.

We consider the dent distance version of
the following fundamental visibility problem:
Given an orthogonal polygon, compute the (or-
thogonal) link diameter.

3 Link Diameter

The link diameter algorithm used by de
Berg [dB91] and Nilsson and Schuierer [NS91b]
is based on a straight forward divide and con-
quer approach. First the polygon P is split into
two approximately equal sized subpolygons P,
and P, by a chord c. Now, observe that the di-
ameter of P is determined by one of three cases.
The diameter is determined by the distance be-
tween two points in P;, or between two points
in P,, or between one point in P, and one point
in P,. The algorithm outline is then as follows.

1. If P is a rectangle, then D(P) = 2.

2. Otherwise find a chord ¢ dividing P into
subpolygons P, and P, and such that
|P1], | Py| < 3n/4 + 2.

3. Compute D(P,) and D(P,) recursively.

4. Compute M =
P1,1)2 € Pz}

5. Let D(P) = max{M, D(P,), D(P,)}.

max{d(vy,vs)|lv: €

Note that the algorithm outline is independent
of the distance measure.

The existence of such a chord ¢ in an or-
thogonal polygon is proven by the Orthogonal
Polygon Cutting Theorem [dB91]. The divid-
ing chords c; allow us to represent the partition

of P in a binary tree structure T. The root
node represents P. If P is a rectangle then T
consists of a single node. Otherwise, for each
internal node ¢ representing a subpolygon P;,
there exists a dividing chord ¢; which splits the
polygon P; into two sub-polygons represented
by its two children. The balancing of the di-
viding chords ¢; means that the height of the
tree is O(log n). Hence the running time of the
algorithm is determined by the complexity of
determining c and the cost of computing M.

de Berg [dB91] showed that ¢ can be found
in linear time with respect to the polygon. In
order to compute M we do not want to con-
sider too many pairs of points. de Berg [dB91]
showed that it suffices to consider distances be-
tween vertices only. The following lemma es-
tablishes the equivalent property for dent dis-
tances.

Lemma 3.1 Given an orthogonal polygon P
and any two points py, p; € P, there exists at
least one vertex v such that the dent distance

d(p1,p2) < d(p1,v).

This lends itself to a brute force algorithm
by inspecting vertex pairs. However, de Berg
showed that M can be computed in linear time
with respect to the size of P; and P,.

4 Dent Parameterization

In this section we briefly outline the main
points of the algorithm which are dependent
on the distance function and give their dent
equivalents. The focus of the problem is now
on Step 4, computing M, the maximum dis-
tance d(v,w) over all v € P, and w € P,.

The main idea of the algorithm is to record,
for each vertex v, a segment on ¢, which rep-
resents the points reachable by v in distance
d(c,v) = minge. d(z,v). The segments of two
vertices v and w on different sides of ¢ are then
used to determine the extra cost (to the path
from v to w) of joining the points with a path



that crosses c. This is done by noting the rela-
tionship between the segments on c. By consid-
ering segments for each vertex on c at the same
time we hope to be able to determine a furthest
pair without doing pairwise comparisons.
First, we note that the segment for one ver-
tex is connected. Second, note that one end-
point of the segment is an endpoint of ¢ since
the path from v to ¢ can continue along c in a
staircase direction without increasing the dent
length of the path. For a particular point v
we represent its segment on ¢ by its endpoints
v! and v%, where v? is the endpoint coinciding
with an endpoint of c. v! is chosen to maximize
the (Euclidean) length of the segment and is
actually the same as one of the endpoints com-
puted in [dB91]. We say that c? determines the
staircase orientation of the path from v to c.

Lemma 4.1 Let ¢ divide P into two subpoly-
gons P; and P, such that v € P, and w € Py,
and let d(v,c) = d, and d(w,c) = d,,. Then we
have

div,w)=d, +dp + A

where

0 ifv?#w? A€ (ww?)
A=1{1 ifv?=uw?
2  otherwsse.

Since this is the basis of the next result we
explain the three cases. In the first case, the
paths from v and w arrive at ¢ with opposite
staircase orientations (v? # w?) from different
sides. Since v! € (w!,w?), this means that
the two staircases have a point in common and
hence can be joined together without forming
a dent. In the second case, the paths arrive
with the same orientation. This means that
the staircases go up and then down (or down
then up) as they cross ¢, and hence incur 1
dent. The final case has the staircases in oppo-
site orientation but this time they need a new
edge to join them up. This edge forms causes
the last link of each staircase to become a dent
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edge and hence increases the total dent length
by 2.

Next, we formulate the computation of M
in a similar manner, extending the case anal-
ysis to 3 possible cases for all the segments of
all the vertices. Let d; = max{d(v,e) v € P}
and d; = max{d(w,e) w € P,}. Next, let PF =
{u is a vertex of P;|d(u,c) = k} for i = 1,2 de-
note the set of vertices of P; at distance k from
c. Note that dy +dy > M < dy +d,+2 and that
to achieve the upper bound of d; + d; the two
vertices must come from P{* and P§? respec-
tively. However, if M < d; + d; + 2 then a ver-
tex v; which determines the maximum distance
might be at distance d; — 1. From Lemma 4.1
we then have the following.

Lemma 4.2
M=d +d,+A

where

2 if3ve PH andw e P

such that (v',v?) N (w!,w?) =0
1 elseif Jve P andw € P&

such that v? = w?

or

Jve P! and w € P

such that (v',v?) N (w!,w?) =0

or

Jv e P and w € P2?

such that (v',v?) N (w',w?) =0
| 0 otherwise.

Without loss of generality suppose c is ver-
tical and ¢, is higher than c;. We first consider
vertices v € P such that v? = ¢! and vertices
w € PF such that w? = ¢?. The first condi-
tion is checking that no intervals from vertices
of P{* intersect intervals from vertices of P
and may be rewritten as:

min{v'|v € P* and v? = ¢'} >
max{w'|w € P{? and w? = ¢?}.

To check the other candidates for this case just
switch ¢! and c? in the equations.
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The next condition involves three sets of
vertices. First we check vertices v € P and
w € P§? to see if a pair of segments intersect
at an endpoint of c:

2 2 _ 1
max, ¢ pi v max,, pa w? = c
or
max .4 v2 = max __q4 w? = c°.
vEP? wePt T

If neither of these conditions hold then we need
to check vertices from v € P{*~! and w € Pj2.
In this case we are testing for the same con-
dition as in the first case, to see if the path
between any two vertices gains two dents by
crossing c. Similarly we check for v € P and
and w € P{*~!. Otherwise the maximum dis-
tance between vertices in P; and P, is dy + d,.
All these conditions can be checked in linear
time. Hence Step 4 of the algorithm takes at

most linear time, providing the following result.

Theorem 4.3 The dent diameter of an or-
thogonal polygon with n vertices can be com-
puted in O(nlog n) time.

5 Conclusion

We have noted the interesting developments of
the orthogonal link diameter problem and ex-
tended those results to another distance func-
tion, to solve the dent diameter problem in
O(nlogn) time. The dent diameter is of in-
terest for its additional measure of shape com-
plexity of a polygon. Since the orthogonal link
diameter problem may be solved in optimal lin-
ear time we suspect that a different approach
should also allow the link diameter to be com-
puted in linear time. An interesting problem is
to generalize these results for restricted orien-
tation polygons.

Also related to this problem is the cen-
ter problem: find the set of points such that
the distance to their furthest neighbor is min-
imized. = Lenhart et al. [LPS*87] gave an
algorithm for computing the link center of

a simple polygon in O(n?) time and O(n?)
space. Subsequently Djidjev et al. [DLS89] and
Ke [Ke89] both provided O(nlogn) time algo-
rithms for computing the link center. Nilsson
and Schuierer [NS91a] again considered the or-
thogonal version of this problem and gave an
optimal O(n) time algorithm. Once again the
algorithms may be adapted to solve the stair-
case and dent distance versions of the center
problem however a direct application does not
produce an optimal time algorithm.
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