122

Revenge of the Dog:
Queries on Voronoi Diagrams of Moving Points

O. Devillers* M. Golint

Suppose we are given n moving postmen p;(t) = ¢i + vit,
i = 1,...,n where g;,v; € IR?>. The problem we address is
how to preprocess the postmen so as to be able to efficiently
answer two types of nearest neighbor queries. The first type
of query asks “who is the nearest postman at time t to a
customer located at point go?” The second type of query also
assumes a query point go at time ?o but in addition specifies a
query speed vo with which the query point can move towards
a postman. It then asks for the postman that the query point
can reach quickest. We provide the first deterministic data
structure that permits solving both types of queries.

1 Introduction

We discuss two variations of the classic post-office prob-
lem that arise when the post-offices are allowed to move.
A recent paper [DG93] introduced the problems and
demonstrated a data structure for solving them. The
data structure and techniques used there were inherently
randomized; the existence of efficient deterministic solu-
tions was posed as an open question. In this paper we
provide such solutions. Following [DG93] we assume that
each postman moves with constant velocity:

i=1,...

pi(t) = ¢i + vit,) 12y

where p;(t) is the location of the i*Ppostman at time ¢,
g¢i € IR? its location at time 0, and v; € IR? its velocity.
By analogy with the static post-office problem we would
like to preprocess the postmen so as to easily answer the
question “given a query point go at time ¢o who is the
closest postman?”

In the static case the meaning of “closest” was quite
clear. The closest post-office was also the one that could
be reached quickest. In the moving postmen problem we
have to distinguish between the two different types of
closeness; if the query point go at time ¢, is not moving
then we search for the postman whose distance from gq at

1INRIA, B.P.93, F-06902 Sophia-Antipolis cedex, France.
email:0livier.Devillers@sophia.inria.fr. Partially supported
by ESPRIT Basic Research Action r. 7141 (ALCOM II).

2Hong Kong UST, Kowloon, Hong Kong.
email:golin@cs.ust .hk. Partially supported by HK-RGC grant
HKUST 181/93E

3Ben-Gurion University, Beer-Sheva, Is-
rael. email:kklara@math.tau.ac.il. Part of this work was done
at Cornell University supported by AFOSR-91-0328.

4Max Planck Institut fiir Informatik, 66123 Saarbriicken, Ger-
many. email:stschirr@mpi-sb.mpg.de. Supported by BMFT (ITS
9103)

K. Kedem? S. Schirra®

time ¢q is shortest. But when the query point is allowed
to chase the postmen in a given speed vy € IR, then
the postman it can reach first is not necessarily the one
closest to it at time tp.

More formally, we define the types of queries we deal
with as follows. Let us denote by |p — ¢q| the Euclidean
distance between points p and ¢ in the plane.

(1) Moving-Voronoi queries: Given a customer at loca-
tion go € IR?, at time ¢y € IR, find the postman nearest
to it. Let

M(qutO) =
{pi : |pi(to) — g0l < Ipj(to) —qol,j #¢,i=1,...n}

be the set of nearest postmen. The query returns a post-
man from M(qo,t0). (Throughout the paper we abuse
notation a little by having p; denote both the i’th post-
man and its motion parametrized by ¢.)

(2) Dog-Bites-Postman queries: The inputs of a query Q
are go € R?,to € R, and vp > 0, vy € IR (only the size
of speed is known, direction is chosen by the dog). They
specify a dog located at gg at time ¢o capable of running
at maximum speed vo. The dog is mean; it wants to
catch and bite a postman. It’s also impatient; it wants
to bite a postman as soon as possible. The problem here
is to find the postman the dog can reach quickest. Set

t;(Q) = min{t > to : (t —to)vo = |p;j(t) — qol},

J =1,...,n, to be the first time that the dog can catch
postman j, and

D@)={p : (@) <t(Q), J#i - n}

to be the set of postmen that the dog can reach quickest.
The query returns a postman from D(Q).

For the second type of query we assume that vy > |v;],
i =1,...,n, ie., the dog is faster than all of the post-
men. This guarantees that every query has an answer
and also simplifies the underlying geometry of the prob-
lem. We discuss what happens if the dog is slower than
the postman in Section 6.

As an example, see Figure 1, suppose that n = 2 with
pi(t) = (2+1/4,0), p2(t) = (=3 +¢/2,0). The query
point is go = (0, 0), the query time to = 0 and the query
speed vg = 1. The nearest neighbor to g at time %, is
postman p;. The postman that the dog can reach quick-
est though is p, (this will happen at ¢ = 2). The reason

i=1,..

——F—e =2
® O °

t
p2(0) 90 p1(0)

Figure 1: Two types of queries.

arctan(vg)

Figure 2: The postmen in (z, y,t) space and the cone of
the dog

that the two answers are different is that p;, the near-
est postman, is moving away from the dog while ps, the
further one, is moving towards it.

In the moving-Voronoi query, once t, is specified no
further information about the postmen’s movements is
needed. This type of query is equivalent to doing point
location in the planar Voronoi diagram V' (¢o) of the sites
p1(to), - - -, Pn(to).

As illustrated by the example above, for a Dog-type
query, we must also know how the points move since it is
possible that a postman further away from the dog might
be moving towards the dog and can therefore be reached
quicker than a nearer postman moving away. One can
think of the postmen as straight lines in (z,y,t) space
(see Figure 2). A query dog for a query Q = (go, to, v0)
can be thought of as a circular cone C(Q) with apex
(g0,t0) that grows upwards with angle arctan vy. Find-
ing the postman that can be reached quickest is equiv-
alent to finding the postman-line p(t) which intersects
C(Q) at the lowest t value. Solving a postman query is
therefore equivalent to doing point location in the three
dimensional Voronoi diagram of the lines defined above,
using the given cone C(Q) as a convex-distance function.

In [DG93] a randomized data structure is described
which permits the solution of both moving-Voronoi and
fast Dog-type queries. The data structure is constructed
incrementally by adding postmen one at a time in a ran-
dom order. Given this structure both types of queries
can be answered in O(log? n) expected time. The ex-
pected size of the data-structure is O(T(n)) (more pre-
cisely it depends on the number of topological changes,
T(n), in the moving Voronoi diagram which we dis-
cuss below), and the expected preprocessing time is
O(T(n)logn). The development of a deterministic so-
lution was left as an open problem.

123

In this paper we show two ways to answer these queries
deterministically. In the first one we use O(T'(n)) space
and the dog’s query time is O(log*n), and in the sec-
ond we show how to build a deterministic data structure
which answers both types of queries in O(logn) time.
The price paid for the latter is an increase in the stor-
age requirement and the preprocessing time, to O(T'(n)?)
and O(T'(n)? logn), respectively.

The paper is organized as follows. In the next sec-
tion we discuss our approach to the problem, we review
the randomized solution of [DG93] to this problem, and
outline an alternative deterministic algorithm based on
a technique in [GT91].

In Section 3 we analyze the cell complex M. In Section
4 we show the correspondence between the data struc-
ture required for moving-Voronoi queries and the data
structure required for Dog-type queries. In Section 5 we
show how, using persistent data structures, we answer
the two types of queries. We discuss open problems in
Section 6.

2 The Generic Approach

We start by considering the Voronoi-diagram of n mov-
ing sites (postmen)
pi(t) = qi + vit, t=1,...,n.

Consider the three-dimensional space (z,y,t) where the
z and y axes span the horizontal plane and the ¢ axis is
vertical to the horizontal plane. At any given time ¢ the
sites p;(f) induce a planar Voronoi-diagram, V;, which
partitions the plane t = . As we sweep V; upwards in
time, the edges of the swept Voronoi diagram form a
partition, M, of 3-space in the following way. The edges
of V; become faces of M, vertices of V; become edges of
M and Voronoi regions of V; become three-dimensional
cells of M. Thus, M is a cell complex, defined by the
moving Vorono: diagram of the moving points. We will
sometimes refer to M as the Moving- Voronoi-Diagram.

During the sweep along t the Voronoi diagram V; un-
dergoes two types of changes. The first type is a con-
tinuous deformation, where the topology of the diagram
remains the same; Voronoi proximity relations do not
change. What changes are the locations of the Voronoi
vertices in the plane and the locations and lengths of the
Voronoi edges. The second type of changes is the addi-
tion or deletion of Voronoi edges. This occurs when, due
to new proximity relations, a new Voronoi edge appears,
first as a new vertex, which then expands (as ¢ grows)
to become an edge; or when a Voronoi edge shrinks to
a Voronoi vertex and disappears. At these times of ap-
pearance and disappearance the topological structure of
Vi is modified; these changes are therefore called topo-
logical changes in V;. The (z,y,t) points at which these
topological changes occur will be the vertices of M. We
use T'(n) to denote the number of topological changes.

124
We call the times ¢ at which topological changes occur
critical times.

The value of T'(n) has been well studied; it is known
that T(n) = O(n3) (see, e.g., [FLI1], [GMR91]), (this
can be shown, e.g., using the linearization method) and
that there are sets of n moving points for which T'(n) =
Q(n?). The problem of whether there are sets of n moving
points for which T'(n) = w(n?), i.e. asymptotically bigger
than n?, is still open.

Since a two dimensional Voronoi-diagram has space
complexity O(n) and each topological change can cause
only a constant number of changes to V;, the space com-
plexity of M is O(n + T(n)) = O(T(n)).

One approach to solving a moving-Voronoi query is
to construct a data structure which, given t9, implicitly
reconstructs the Voronoi diagram V;, and then allows
efficient planar point location of go in V;,. This can be
done by slightly modifying a data structure described by
Goodrich and Tamassia in [GT91]. This modified struc-
ture uses O(T(n)) space to store all of the T'(n) topo-
logically different Voronoi diagrams and, given a speci-
fied diagram, permits planar point location in it using
only O(log?(n)) time. For us the important feature of
this structure is that it stores the topological structure
of the Voronoi diagrams and not the actual location of
their vertices and edges. Given a query (qo, o) one would
first use an O(log(T(n))) = O(logn) binary search on
the topological changes of the Voronoi diagrams to find
the topology of the Voronoi diagram at time t,, and
then use Goodrich and Tamassia’s structure to locate,
in O(log? n) time, the point g within the Voronoi dia-
gram at 1.

This approach can be used also for dog-queries, in-
creasing the query-time by using the parametric search
technique [Me83]. Let Q be a query with location go at
time o and speed vo. The main observation is due to the
hypothesis that the dog is faster than the postmen which
implies C(Q) N pi(t) # 0 for all ¢t > t;,(Q). Let t*(Q)
be the smallest time where the dog can reach a post-
man. Given a time ¢t with M(go,t) = p; we can compare
t*(Q) and t as follows: If ¢;(Q) > t then the dog cannot
reach a postman before ¢, and t*(Q) € [t,#;(Q)]. Oth-
erwise the dog can reach a postman before ¢, (at least
pi and possibly others) and t*(Q) < ¢(Q) < t. Since
D(Q) = M(qo0,t*(Q)), the idea is to run the algorithm
above using a query M(qo,t*(Q)), where t*(Q) is un-
known and to maintain an interval [t;ny,t,up] containing
t*(Q). The algorithm by Goodrich and Tamassia be-
gins by a binary search on the critical times. Whenever
t*(Q) is compared to a critical time ¢, if ¢ ¢ [tin 11 tsup)
then the answer to the comparison is known, otherwise
the query M(qo,t) = p; is solved and the interval of
t*(Q) is changed, either to [tins,t:(Q)] (if t:(Q) < t),
or to [t, min(t,up,:(Q))] (if t;(Q) > t), and the binary
search continues. After the binary search we know the
topology of V;«(q). During the location of gp in Viv(@)»
we have to compare gq against edges of the Voronoi di-

agram. let e(t*(Q)) be such an edge and let L(t) be the
bisector at time ¢ of the postman defining e(t*(Q)). Ei-
ther (go,t) is for all ¢t on the same side of L(¢) (wrt the
plane parallel to the z, y-plane at height ¢) or there is ex-
actly one time t;, where (go,¢L) is on L(¢z). By solving
the query M(qo,tz) we can compare ¢, and t*(Q) and
thereby decide on which side of e(¢t*(Q)) the point ¢
resides. Running the parametrized query M(qo,t*(Q))
performs O(log® n) tests and each such test is answered
in O(log® n) time, thus a dog query can be answered in
O(log® n) time. Hence we have

Theorem 1 A moving- Voronoi query for n postmen can
be decided in time O(log? n) time using space O(T(n)).
A dog query for n postmen slower than the dog can be
decided in time O(log* n) using space O(T(n)).

Another approach to solving moving-Voronoi queries
uses the fact that M subdivides three-space into cells
such that all (¢,t) points (¢ = (z,y)) in a given cell have
the same nearest postman. Solving a moving-Voronoi
query can therefore be done by locating the cell in M
which contains (z, y,t). This approach is used in [DG93],
where a three-dimensional point location structure for
M is built incrementally by adding the postmen at a
random order, one at a time, to the structure and by
saving the changes that the addition of the new post-
man caused to the old structure. (This method is sim-
ilar to the Guibas, Knuth and Sharir [GKS92] random-
ized data structure for point location in static Voronoi
diagrams.) It was shown in [DG93] that the expected
time for a moving-Voronoi query in this data structure
is O(log? n) where the expectation is taken over all pos-
sible orders in which the postmen can be inserted into
the data structure. It was also shown that, if the dog
is faster than all of the postmen, then this same data
structure also answers Dog-type queries in O(log” n) ex-
pected time. If S is the set of n postmen being stored
then the expected size of the data structure was shown

to be O (er" T—gﬂ) where T'(r) is the expected number

of topological changes in the moving-Voronoi diagram of
a random sample of r postmen from S. This implies that
the expected size of the data structure is O(n3).

In the following sections we sketch our second deter-
ministic algorithm. First we analyze the geometry of

M.

3 The cell complex M

Consider the Voronoi diagram V(t) of the moving sites
p1(t),...,Pn(t). As described above, the cell complex M
is constructed as we sweep the changing diagram V (t) up
along t. M consists of vertices, edges, surface patches
and cells; the vertices are points (z,y,t) where there
is some topological change in the moving Voronoi dia-
gram, the edges are the vertices of the planar Voronoi
diagram which are swept along ¢, the surface patches

are the edges of the planar Voronoi diagram swept along
t, and the cells are the planar Voronoi regions swept
along t. Observe now the moving points p;(t) as line
segments in (z, y,t) space; the cells of M can be viewed
as sleeves around these line segments. The boundaries of
the sleeves consist of algebraic surface patches (ruled sur-
faces), which in turn intersect in algebraic curves, called
edges, and the edges intersect in the vertices of the cell
complex M.

More explicitly, let pi(t) = ¢i + vit for i = 1,...,n,
where each point ¢; = (i, %), and v; = (vzi, vyi). Then
the surface between two moving points p;(t) and p;(t) is
described by

(2 =2 — vgit)? + (y — v — vyit)?
= (z —zj = v5it)® + (y — yj — vy5t)%,

which is a quadratic algebraic surface. The edges, which
are intersections of these surfaces, can be quartic curves
in (z,y,1).

Clearly there are exactly O(n) sleeves in M. As to the
total complexity of M. We have said that the number
of vertices in M is O(T(n)), it is well known that the
number of changes to the Voronoi diagram at a topo-
logical change is bounded by a constant, therefore the
total complexity of M (vertices, edges, surface patches)
is O(T(n)).

Now consider I; y, the fixed infinite vertical line per-
pendicular to the horizontal plane at point (z,y) and
its intersections with the surfaces of the cell complex
M. These intersections subdivide I, into intervals in
which a particular postmen is always the nearest. Label
the interval with the name of the corresponding nearest
postman. The labels change at the times that I, , in-
tersects M. The enumeration of the different labelings
along I, , as t changes from ¢t = —co0 to t = oo defines
the labeling of I, ,. The (infinite) set of all vertical lines
is divided into equivalence classes, each class containing
all the lines with equal labeling.

The number of different labelings of these lines can
be bounded by the number of faces, edges and vertices
of the projection of M on the (z,y) plane. To obtain
the projection of M on the plane we project the edges
and vertices of M on the plane. Projecting surfaces on
the plane is the projection of all points on the surface
patch which are tangent to a vertical line (the silhouette
of the surface patch). It is known that the silhouette of
an algebraic surface patch of a constant degree consists
of a constant number of connected components (each
of which is also algebraic of constant degree), and that
it has a constant number of extremal points in a given
direction and points of self intersection.

Thus, the total number of edges on the projection of
M on the plane (z,y) is O(T(n)). Since every edge
(or surface) is an algebraic of constant degree, so is its
projection on the plane. Hence two edges on the plane
intersect at most a constant number of times. Given that
there can be 0((T(2”))) intersecting edges, we get that

125
the number of equivalence classes (cells on the plane) is

O(T(n)?).

4 The correspondence between
the two types of queries

Consider a customer sitting at some fixed point ¢ =

~ (z,y) forever observing the postmen whizzing by. As

time passes, the nearest postman or postmen to the
customer will only change at certain discrete times,
1 < ta < :+- < ty; between two discrete times the
nearest postman (postmen) will remain the same. We
set i; to be the index of a nearest postman to q between
times ¢;, and ¢j 41, j = 1,...,m. To make our definitions
consistent we set g = —oo and tn4; = oco. Formally,
the ¢; and i; are defined so that for all ¢ € [t;,¢;41) we
have p;; € M(z,y,t) and for small enough ¢ we have
that M(z,y,t; —€) # M(z,y,t; + ¢).

To visualize the situation geometrically consider a ver-
tical line starting at (¢, —co) and traveling upwards to
(g,00). The time t; is the j’th time that the line passes
through a face of M. The face that the line stabs at
time ¢; is the one that separates the region associated
with postman p;,_, from the one associated with post-
man p;;. We call the times ¢;, the stabbing times and
the sequence i;, j = 1,...,m, the stabbing sequence as-
sociated with gq.

Because the postmen are moving linearly, m, the size
of the stabbing sequence must be small.

Lemma 1 Fiz a point q and let the stabbing sequence
t1,...,im be defined as above. This sequence is a (n,2)
Davenport-Schinzel sequence and hence m < 2n.

Proof.
A sequence is a (n, 2) Davenport-Schinzel sequence if it
does not contain a 2-repeating subsequence of the form

il

Suppose the stabbing sequence did contain some 2-
repeating subsequence. If i...j or j...i then there is
some time ¢ between the time when p; is the nearest
postman to g and the time when p; is the nearest post-
man such that

pi(t) — ql? = |pj(t) — g

The existence of a 2-repeating sequence therefore im-
plies the existence of at least three distinct times ¢ when
this equation is satisfied. The points move with constant
speed though so |p;(t) — q|2 — |p;(t) — ¢|? is a quadratic
equation and only has two roots leading to a contra-
diction. By contradiction the stabbing sequence is a
(n, 2) Davenport-Schinzel sequence and has hence length
m < 2n.

We can now propose a different approach to answering
a moving-Voronoi query. Note that between any two

126

stabbing times ¢;, ;41 the vertical line through ¢ will
be totally contained within the region associated with
postman p;;.

Suppose that, given any point ¢ we can access the
stabbing times associated with ¢ in a way that permits
binary search on ¢. Then we can solve a moving-Voronoi
query (q,t) as follows: in O(logm) = O(log n) time per-
form a binary search on the stabbing times to find the
interval [; = [t;,t;41) that contains ¢. Then the nearest
postman to ¢ at time ¢ is postman p;;.

The surprising fact is that if we can access the stabbing
sequence in this way then we can also answer dog queries
in O(logn). This will follow from the next lemma which
is a consequence of Theorem 4 in [DG93].

Lemma 2 Let q be a fized point in R?. Let v be a fized
dog speed faster than those of all of the postmen; v > |v;|,
i=1,...,n. Given a timet we define a function p(t) as
follows. Letp € M(q,t) be a postman nearest to q at time
t. Set d(t) = |p(t) — q| to be the distance between q and
tts nearest neighbor. Define the function p, : IR — R

poly=t- 28
Then
(a) py is a 1-1 continuous mapping from R to IR such
that ift > t' then p,(t) > py(t'). Furthermore py(—00) =
—00 and p,(o0) = oco.
(b) M(q’ t) = D(Qa Pu(t), 'U).

Statement (a) tells us that p, maps the interval
I; = [tj, tj4+1) continuously into the interval p,(I;) =
[ov(2;), pu(tj+1)) and that

Pu(t1) < pu(t2) < -+ < py(tm).

Because the intervals I;, j = 1,...,m, partition IR the
intervals p,(I;), j = 1,...,m also partition IR. State-
ment (b) says that if p is a nearest neighbor to ¢ at time
t then p is a postman that a dog starting at ¢ at time
pu(t) can reach quickest if the dog travels with speed
v. Taken together the two statements provide us with a
way of answering a Dog-type query. Given a dog located
at ¢ at time t’ that can travel with speed v we locate
the unique interval I; such that ¢’ € p,(I;). We then
know that postman p;; is the one that the dog can reach
quickest.

There remains one difficulty. How do we find the inter-
val I; such that t’ € p,(I;). We can do this by performing
a binary search on the m values

Pu(t1) < pu(t2) < -+ < pu(tm)-

Although we do not know these values in advance the
values
th1 <t2< <1y

are available in a fashion that permits us to do binary
search on them. Given any ¢; we also know the postman

pi; which is a nearest postman to ¢ at time ¢;. We can
therefore, in constant time, compute d(t) = |pi,(¢;) — q|
and from there p,(t;). Consequentially, given any t; we
can, in constant time, decide whether ¢’ > p,(t;) or not.
We can therefore perform an O(logn) binary search to
find the interval p,(I;) which contains ¢'.

To review, we have just seen that if we have a data
structure which returns the stabbing times {t;}, in a
form suitable for binary search, for any given point ¢,
then we can solve both moving-Voronoi queries and dog
queries in O(logn) time. In the next section we will
describe such a data structure.

5 Point location using persistent
binary search trees

Assume we have constructed M by one of the standard
methods, see, e.g., [GMR91]. Let ML denote the projec-
tion of M onto the (z, y) plane. We construct the planar
subdivision defined by M* by a plane sweep. The sweep
stops at intersections and cusps of the projection of the
edges and the silhouettes of the facets of M . Under
the assumption that intersections and cusps of the curve
segments can be computed in constant time, the sweep
takes time O(r logr) = O(rlogn) where r is the number
of regions of the subdivision. Since two algebraic curves
of bounded degree have at most a constant number of
intersections, we have r = O(T(n)?).

During the sweep we can build a point location struc-
ture according to Sarnak and Tarjan [ST86] and Cole
[Co86]. The sweep defines a subdivision of the plane
into vertical slabs such that curve segments in each
slab are totally ordered. Since the order of the curves
is similar for contiguous slabs, the curve segments are
stored in versions of a partially persistent binary search
tree. For locating a point (z,y) we first determine
the slab containing z and then locate y between the
curve segments intersecting the slab using the version
of the partially persistent binary search tree that cor-
responds to the slab. All versions together have space
complexity O(r) = O(T(n)?), point location takes time
O(log r) = O(log n) [ST86, DSST8Y).

After locating the region that contains the projection
(z,y) of the query point (z,y,t), we have to locate ¢
in the stabbing sequence corresponding to this region.
Since the stabbing sequences of neighboring regions are
similar we can use persistent search trees again. How-
ever, we don’t have a natural linear order on the ver-
sions of the binary search trees, so partially persistence is
not sufficient here. Hence we use fully persistent binary
search trees [DSST89] to store the stabbing sequences.
Given a search tree for a region, a constant number of
updates is sufficient to build a search tree for a neigh-
boring region. Any rooted spanning tree of the dual of
the graph defined by the planar subdivision gives us a
rooted version tree (a partial order on the versions).

Starting with the empty version we build the version
of the fully persistent binary search tree corresponding
to the root region of our spanning tree. For the other re-
gions we update the version corresponding to the region
which precedes it in the spanning tree. Since O(1) up-
dates suffice the fully persistent search tree for a region
can be constructed in time O(log n) with O(1) additional
storage, cf. [DSST89]. With a region we store a pointer
to the search tree for its stabbing sequence. We get con-
struction time O(n + rlogn) and O(n + r) space, where
r is the number of regions. Once a region is known we
can locate ¢ with the fully persistent binary search tree
in time O(logn). Altogether we get

Theorem 2 A moving- Voronoi query for n postmen can
be decided in time O(logn) time using space O(T(n)?).
A dog query for n postmen slower than the dog can be
decided in time O(logn) using space O(T(n)?).

6 Open problems

The major problem left open in this paper is how to
solve Dog-type queries if the dog is slower than some of
the postmen. If the dog is slower than the postmen then
the correspondence between moving-Voronoi and Dog-
type queries described in Section 4 no longer holds and
it is not obvious how to construct a data structure that
permits the solution of both types of queries.

It will be good to introduce a trade off between query
time and storage requirement for this problem. In Sec-
tion 2 we use an optimal O(n3) space, but the Dog-type
query is answered in time O(log*n), while in Section
5 we achieve a logarithmic time for answering a query,
while the space needed is quite large - O(n®).

7 Acknowledgements

Klara Kedem and Mordecai Golin would like to thank
the Max-Planck-Institut, for providing an excellent wor-
king environment.

The authors would like to thank Mike Goodrich for
directing our attention to the applicability of [GT91] to
solving moving-Voronoi queries.

References
[Co86] R. Cole. Searching and storing similar lists.
J. Algorithms, 7:202-220, 1986.

[DG93] O. Devillers and M.J. Golin. Dog Bites Post-
man: Point Location in the Moving Voronoi
Diagram and Related Problems. In Proceed-
ings of the First European Symposium on Al-
gorithms. 1993

127

[DSST89] J.R. Driscoll, N. Sarnak, D.D. Sleator, and
R.E. Tarjan. Making data structures persis-
tent. J. Comput. Syst. Sci., 38:86-124, 1989.

J.-J. Fu and R. C. T. Lee. Voronoi diagrams
of moving points in the plane. Internat. J.
Comput. Geom. Appl., 1(1):23-32, 1991.

L. J. Guibas, D. E. Knuth, and M. Sharir.
Randomized incremental construction of De-
launay and Voronoi diagrams. Algorithmica,
7:381-413, 1992.

L. Guibas, J. S. B. Mitchell, and T. Roos.
Voronoi diagrams of moving points in the
plane. In Proc. 17th Internat. Workshop
Graph-Theoret. Concepts Comput. Sci., vol-
ume 570 of Lecture Notes in Computer Sci-
ence, pages 113-125. Springer-Verlag, 1991.

[FL91]

[GKS92]

[GMRY1]

[GT91] M. Goodrich and R. Tamassia. Dynamic trees
and dynamic point location. In Proc. 23rd
Annu. ACM Sympos. Theory Comput., pages

523-533, 1991.

[Me83] N. Megiddo. Applying parallel computation
algorithms in the design of serial algorithms
In Journal of the ACM, volume 30, pages

852-865, 1983.

N. Sarnak and R.E. Tarjan. Planar point
location using persistent search trees. Com-
mun. ACM, 29:669-679, 1986.

[STS6]

