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Abstract

Sparse graphs (e.g. trees, planar graphs, relative neighborhood graphs) are among the
commonly used data-structures in computational geometry. The problem of finding a com-
pact representation for sparse graphs such that vertex adjacency can be tested quickly is
fundamental to several computational geometry and graph algorithms. We provide here
simple and optimal algorithms for constructing a compact representation of O(n) size for an
n-vertex sparse graph such that the adjacency can be tested in O(1) time. Our sequential
algorithm runs in O(n) time, while the parallel one runs in O(logn) time using O(n/logn)
CRCW PRAM processors. Previous results for this problem are based on matroid partition-
ing and thus have a high complexity.

1 Introduction

Paths, trees, relative neighborhood graphs, planar graphs, visibility graphs, etc. are some of
the numerous graph-theoretic data-structures frequently used by algorithms in computational
geometry. For example, dual of a triangulation of a simple polygon is a tree and dual of the
Voronoi diagram of a planar point set is a planar graph. A fundamental data structuring
question in the design of efficient algorithms in computational geometry is how to represent
such an underlying graph in memory using as little space as possible, so that, given two vertices,
we can test their adjacency in O(1) time. Compact representation can be used to obtain e.g.
an optimal algorithm for the visibility query problem [9] stated as follows. Queries are a pair
of vertices of a simple polygon and we are interested to know if the query vertices are visible.
It is easy to see that the complexity of reporting queries and the cost of preprocessing depends
upon the compact representation of the visibility graph of the simple polygon.

Following [6, 13], we say that a class of graphs has an implicit representation if there exists
a constant k such that for every n-vertex graph G in the class, there is a labeling of the vertices
with k[log n]-bits each, that allows us to decide adjacency in O(1) time. Implicit representation
eliminates the need for an adjacency matrix. (Note that in the adjacency matrix representation
of G, adjacency can be tested in O(1) time, but n? bits are required.) Also, an adjacency list
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representation requires (n + m)[logn] bits (where m is the number of edges of G), but the test
for adjacency takes O(logn) time.

The arboricity of a graph G is defined as maxy{|E(J)|/(|]V(J)|—1)}, where J is any subgraph
of G and |V (J)|, |E(J)|, are the number of vertices and edges, respectively, of J. Graphs of
bounded arboricity are called sparse. As observed in [6], an implicit representation can be
computed by decomposing the edges of G into edge-disjoint forests, or alternatively by coloring
the edges of G with k colors such that there is no monochromatic cycle. If G has this latter
property, we say that it is k- forest colorable. It follows from a theorem of [10, 11] that if G has
arboricity ¢ then G is c-forest colorable, and consequently that G has an implicit representation
of (¢ + 1)n[logn] bits. In such a case, G is said to have an optimal implicit representation.

The known sequential and parallel algorithms for obtaining an optimal implicit representa-
tion are based on involved techniques such as Edmonds’ results on matroid partitioning [1]. Also,
the algorithms of Narayanan et al. [8] on matroid union and intersection result in a randomized
parallel algorithm for finding a c-forest coloring of graphs with arboricity ¢ (it runs in O(log®n)
time using O(n*%) processors on a probabilistic CREW PRAM). Planar graphs, a particular
case of sparse graphs with ¢ < 3, have received a considerable amount of attention, see [2, 6, 12].

The main contribution of this paper is to provide optimal sequential and parallel algorithms
for obtaining optimal implicit representations of sparse graphs; our results and their comparison
with previous work are summarized in Table 1. Our results are achieved by simple and rather
intuitive techniques compared with those used in [1, 2, 12].

Implicit Planar Graphs Graphs of Bounded
Representation Arboricity ¢
Number
of bits 4n[logn] 4nflogn] | (c+ 1)nflogn] | (c + 1)n[logn]
Sequential
Time O(n) O(n) O(n?) O(n)
Parallel
Time O(log nloglogn) O(logn) — O(logn)
Number of :
Processors O(n/lognloglogn) | O(n/logn) — O(n/logn)
Results
achieved in: [2, 12] This paper (1] This paper

TABLE 1: Our results and their comparison with previous work. The parallel model of computation is the
arbitrary CRCW PRAM [5].

Note that the results in Table 1 require a priori the knowledge of the arboricity of the input
graph. Since computing the exact value of arboricity seems to be hard [8, 13], we provide here
algorithms that compute good approximations for it. We also show that using the approximate
value, we can still obtain an optimal implicit representation of a sparse graph.

2 Preliminaries
The following lemma is central to our discussion.

Lemma 1 Suppose that the vertices of a graph G can be ordered as vy, vs, ..., v, such that each
vertez v; has at most k neighbors before it (i.e., among v,...,v;). Then, G is k-forest colorable.
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Proof: Induction on i. Assume that the subgraph of G induced by v,,...,v;—1 can be colored
using k colors, say integers from 1 up to k. Let the neighbors of v; that come before it, be
Uy, ..., Up, where p < k. For each 1 < j < p, color the edge (v;, u;) with color j. a

Suppose that we are given a k-forest coloring of a sparse graph G. We can obtain an optimal
implicit representation of G as follows. First, give distinct labels to the vertices with integers
from 1 up to n. Then, concatenate to each vertex label, the label of its parent in each of the &
forests. In order to decide if two vertices are adjacent, check if one is the parent of the other in
any of the k forests. Observe that in this representation we need at most (1+d(v))[logn] bits for
each vertex v, where d(v) is the total number of parents of v in the k forests. It is clear that the
total number of bits thus needed is at most (n+m)[logn] as each edge of G is represented exactly
once. Further, (n + m)[logn] < (c + 1)n[logn], since m < ¢(n — 1) in graphs with arboricity
‘c. Notice that the number of bits is independent of the number of forests k; k affects only the
query time for adjacency. It is easy to see that the above-mentioned procedure to compute an
optimal implicit representation from a k-forest coloring of G can be implemented sequentially
in O(n) time, or in O(logn) time using O(n/logn) EREW PRAM processors. Hence, for the
rest of the paper, we will be concerned with the forest coloring problem.

We refer to the ordering defined in Lemma 1 as a k-ordering of the vertices. The following
two lemmas will be used in the next section for designing sequential and parallel algorithms to
compute k-orderings of sparse graphs.

Lemma 2 Let G = (V, E), |V| = n, be a graph with arboricity c. Then G has a vertez of degree
at most 2¢ — 1.

Proof: |E| < ¢(n—1) as G has arboricity c. So the sum of the degrees is at most 2¢(n — 1) and
hence G must have a vertex of degree at most 2¢ — 1. a

Lemma 3 Suppose that G = (V, E), |V| = n, is a graph with arboricity c. Let |U| be the set of
vertices of degree at most 2c. Then |U| > (57)n.

Proof: As before, |E| < ¢(n — 1). There are n — |U| vertices of degree at least 2¢ + 1, and
summing the degrees of these vertices we get (n — |U|)(2¢c + 1) < 2|E|. The lemma follows by
rearranging the terms. m|

3 Forest Coloring With Known Arboricity

In this section we present algorithms for computing optimal implicit representations of sparse
graphs. Lemma 1 implies that in order to find an optimal implicit representation of a sparse
graph G, it suffices to find a k-ordering of G. A sequential algorithm for computing a k-ordering
of G is given in Algorithm 1.

Theorem 1 Let G = (V,E), |V| = n, be a graph with bounded arboricity, say c. Then a
(2¢ — 1)-forest coloring of G can be computed in O(n) time.

Proof: By Lemma 2, G has a vertex of degree at most 2¢ — 1; call it v, and delete it from
G. Again, G has arboricity ¢ and hence has a vertex, say v,_;, of degree at most 2¢ — 1. By
repeating this process, we obtain a sequence vy, ..., v,, Which is actually a (2¢ — 1)-ordering of
the vertices of G. This procedure is formalized in Algorithm 1. Hence, Algorithm 1 correctly
computed a (2¢ — 1)-forest coloring. We now discuss the complexity of the algorithm. The work
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Input: A graph G = (V, E), |V| = n, and its arboricity c.
Output: A (2c — 1)-forest coloring of G.

1. Low := {v : degree of v in G is at most 2¢ — 1}; i := n.
2. while Low # 0 do

1. Pick a vertex, say u, from the set Low. for each neighbor w ¢ Low of u do:
Decrement the degree of w by one and add w to the set Low if its degree becomes 2c — 1.

2. G =G—-u;v:=u;i:=1—1.

Algorithm 1: A sequential algorithm to compute forest coloring.

done in each iteration of the while loop is bounded by the degree of the vertex u. So the total

work done in the while loop is bounded by the sum of degrees, which is O(|E|) = O(n), since

G is sparse. Now using this ordering, we can compute (as shown in the proof of Lemma 1) a

(2¢ — 1)-forest coloring of G. o
A parallel algorithm to compute a k-ordering of sparse graphs is given in Algorithm 2.

Input: A graph G = (V, E), |V| = n and its arboricity c.
Output: A 2c-forest coloring of G.

1. G' := G; i := 1; mark all vertices unlabeled.

2. while there is an unlabeled vertex do:

(a) Let U be the set of vertices of G’ with degree at most 2c. for each v € U do:

label(v) = 1.
(b) G' := G' — U; update the degrees of neighbors of U accordingly.
(c) i:=i+1.

3. for each vertex v in G do: delete all the neighbors u from its adjacency list satisfying
label(u) < label(v).

4. for each vertex v do: let its neighbors be u,,...,u;, where £ < 2¢; color the edge (v, u;)
with color 7,1 < i < L.

Algorithm 2: A parallel algorithm to compute forest coloring.

Theorem 2 Given a graph G = (V, E) of bounded arboricity, say c, Algorithm 2 finds a 2¢-forest
coloring of G; the algorithm runs in O(logn) time using O(n/logn) CRCW PRAM processors,
where |V| = n.

Proof (Sketch): The proof for correctness is straightforward: By virtue of Lemma 1, it suffices to
generate a 2c-ordering vy, vs, ..., v, of the vertices. It is easy to see that Algorithm 2 generates
this ordering. Now we analyse the complexity of the algorithm. By Lemma 3, the number
of iterations of the while loop is O(logn). Note that in each iteration, it is not necessary to
recompute the degrees of each vertex after deleting U. Instead, it is sufficient to mark in G’
which vertices have degree at most 2¢. This can be done as follows. For every v € G, assign one
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processor to every vertex u in its adjacency list such that u has not been labeled yet. Then all
such processors p; iterate the following two steps, 2c + 1 times: (a) Every p; writes its id, <d(p;),
into a specified memory location m(v). (b) All p; read the contents of m(v); if m(v) = id(p;),
then p; does not participate in the next iteration. If the contents of m(v) after the 2¢c + 1-st
iteration is the same as that after the 2c¢-th iteration, then the degree of v is at most 2c. Thus
the above procedure needs O(1) time and performs O(|G’|) work on a CRCW PRAM. It is easy
- to see that the rest of the steps can be done in O(1) time using O(n) processors. Hence, the
total resource bounds are as those stated in the theorem. a

4 Approximating Arboricity

The results listed in Table 1 require a priori the knowledge of the arboricity of the input sparse
graph in order to obtain its optimal implicit representation. However, computing the exact value
of the arboricity seems to be difficult [11, 13]. In this section we present algorithms to compute
good approximations for arboricity. The basic idea is to turn around the proof of Theorem 1.

For the rest of this section, let G = (V, E), |V| = n, |E| = m, denote a graph of unknown
arboricity c. Given an integer a, Algorithm 3 tries to generate a (2a — 1)-ordering of the graph
G.

Input: A graph G and an integer a.
Output: A boolean variable ans. The variable ans is set to true if and only if the algorithm is

able to find a (2a — 1)-ordering of G.
1. G, :=G, i:=n, ans := true.

2. while (i > 1) and (ans = true) do
if G; does not have a vertex of degree at most 2a — 1 then ans := false
else
(a) Let u be a vertex of G; with degree at most 2a — 1. Define G;_; = G; — u and update
the degrees of neighbors of u accordingly.

(b) vi:=uand i:=i-1.

fi

Algorithm 3: A sequential algorithm to test arboricity.

Lemma 4 Let k be the smallest value of a for which Algorithm 3 returns the value true. Then
(i) k < ¢ and (i) k can be computed in O(mlogn) time.

Proof (Sketch): By Theorem 1, Algorithm 3 returns a true value for a = ¢c. Sok < c. In

order to estimate the complexity, observe that for a single value of a, Algorithm 3 takes O(m)

time. Therefore, in order to find the particular k, it suffices to perform a binary search in the

range [1,n]. At each step we apply Algorithm 3 supplied with an appropriate value for a (as

determined by the binary search). Note that the binary search will stop as soon as Algorithm 3

returns true for k and false for k — 1. The lemma follows. O
A parallel algorithm to test arboricity is given in Algorithm 4.
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Input: A graph G = (V, E) and an integer a.
Output: A boolean variable ans. The variable ans is set to true if and only if the algorithm is
able to find a 2a-ordering of G.

.G =gV = V', ans := true; mark all vertices unlabeled.

2. while there is an unlabeled vertex and (ans = true) do:

Let U be the set of vertices of G with degree at most 2a.
If|U| < (TJH)IV'I then ans := false
else

(a) mark all vertices of U as labeled.
b))V :=V'-U;G =G -U; update the degrees of neighbors of U accordingly.

fi

Algorithm 4: A parallel algorithm to test arboricity.

Lemma 5 Let k be the smallest value of a for which Algorithm 4§ returns the value true. Then (i)
k < ¢ and (4) k can be computed in O(log® n) time using O(m/ log n) CRCW PRAM processors.

Proof: Omitted from this version. a
The following lemma states that our approximation value for arboricity is at most 1 /2 away

from the exact value.
Lemma 6 (c/2)<k<ec.

Proof: The fact k < ¢ comes by Lemma 4. Algorithm 3 generates a (2k — 1)-ordering of G, and
hence G is (2k — 1)-forest colorable by Lemma 1. Thus ¢ < 2k — 1 by the definition of c. (A
similar argument holds for Algorithm 4.) The lemma follows. a

By the discussion in Section 2 and the above lemma, it is clear that Algorithms 3 and 4 can
be used to compute optimal implicit representations of sparse graphs (since a (2k — 1)-forest
coloring of G results in an optimal implicit representation of G). Therefore, we summarize with
the following.

Theorem 3 Let G be a sparse graph of unknown arboricity. Then an optimal implicit repre-
sentation of G can be computed in O(nlogn) sequential time, or in O(log? n) parallel time using
O(n/logn) CRCW PRAM processors.

Conclusion. We have presented simple and optimal algorithms that compute optimal implicit
representations of sparse graphs. It is known that many intersection graphs also have implicit
representations [6]. The problem of characterizing the classes of graphs having compact repre-
sentation is open. It will be interesting to find better approximations for arboricity of a graph
than what we have presented. Although with our approximation we can compute an optimal
implicit representation, our algorithms compute a number of forests which is at most twice the
optimal. This is good enough for all practical purposes in which the forest coloring problem has
applications; for example, in the design of fault-tolerant networks (4], study of rigidity of struc-
tures [7] and analysis of electrical networks [3]. The known algorithms for computing an optimal



146

forest coloring use matroid partitioning and thus have a high complexity. It is of independent
interest to come up with efficient algorithms for computing an optimal forest coloring.
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