An eight-way perturbatidn technique
for the three-dimensional convex hull

Tsuyoshi Ono
Department of Information Science
University of Tokyo, Tokyo 113, Japan
e-mail: ono@is.s.u-tokyo.ac.jp

Abstract

Simulation of Simplicity is a symbolic perturbation technique presented by
Edelsbrunner and Miicke [3] to cope with degenerate input data for geometric
algorithms. In this paper, we modify some part of this technique and investigate
its application to the construction of the convex hull of points in three dimensions.
With our technique, a large part of degenerate points on the surface are moved
inside, and as the result they are eliminated.

1 Introduction

Three-dimensional convex hulls are geometric objects commonly used to model real-world
objects on a computer. Preparata and Hong [4] showed the divide-and-conquer algorithm to
find the convex hull of three-dimensional points in optimal time @(N log N), where N is the
number of points. Its implementation in Pascal is presented in detail by Day [1]. A problem
yet to be solved in Day’s work is the treatment of degenerate input data, which is the key
issue in converting theoretical algorithms into working programs. In [1] Day assumes that all
of input data is not degenerate (or, simple).

Suppose, for example, a subroutine that takes as input a point and a plane (the latter is
defined by three points on it) in three dimensions and decides on which side of the plane the
point lies. One example of degenerate input is a plane and a point which lies on the plane. If
the program should work well with any sort of inputs, the programmer must prepare for every
possible degenerate case and often fail to keep their codes simple and readable. Moreover,
numerical instability due to round-off errors will be another cause of trouble. It may move
degenerate points in an unpredictable direction and often create topological inconsistencies.
The program can no longer guarantee its robustness.

Many methods have been proposed to resolve this issue, one of which is a symbolic per-
turbation. This perturbation labels all input points with indices and alters “the input data
in such a way that topological information is unchanged but numerical computations become
robust [2].” This enables us to pretend that there is no degenerate input to the program.
The programmer would be able to neglect degenerate cases. The perturbation part of code
appears only in the procedures of primitive operations. Its drawback, however, is that we must
use exact arithmetic, like long integer arithmetic, instead of inexact one, like floating-point
arithmetic.

159

160

Simulation of Simplicity (SoS) is a symbolic perturbation technique presented by Edels-
brunner and Miicke [3] to cope with degenerate input data for geometric algorithms. The
perturbation is conceptual in that it is never computed - it is infinitestimally small due to
symbolic variable €. To use SoS, geometric primitives used in algorithms must be written as
the sign computation of determinants, namely the orientation of point sequences. The same
paper also shows that all operations performed in the convex hull algorithm of Preparata and
Hong can be reduced to the computation of determinants. We combined the work of [1] and
[3] and realized a prototype version of the implementation of the three-dimensional convex
hull algorithm which allows degenerate input data.

Users of symbolic perturbation techniques would like to have some control over the direc-
tion of perturbation. For example, an application to test if two polytope have intersection will
require the perturbation to move points in an outward direction so that it does not miss any
intersection [5, 6].

Here we present another example that needs control of perturbation. Figure 1 illustrates
the problem of “surface degeneracy,” or a degenerate point on the surface of the resulting hull.
The triangle AABC is a facet of the hull and the point O is inside of the hull. Point D is
coplanar with AABC, thus four points A, B,C and D are degenerate.

Suppose we hope that the resulting hull is “clean,” that is, we do not want degenerate
points remain on the surface. Perturbation schemes, when applied, will cause two possibilities.
If point D is perturbed inside, it can be neglected and there is no problem. If perturbed
outside, however, D will remain on the surface of the resulting hull, unnecessarily triangulate
the facet, and incur extra cost in storage and computation. Moreover, as the dimension rises,
the diversity of degenerate cases will also increase and so will the penalty for unnecessary
partition in the surface.

Figure 1: The problem of surface degeneracy

Therefore, It is advantageous to devise a perturbation scheme which perturbs “outward”
the vertices of the resulting hull and “inward” most of degenerate points on the surface. (The
term “inward” or “outward” is used in a relative context; D is perturbed inside if the amount
of outward perturbation of D is smaller than that of A, B or C.)

In this paper, we propose a perturbation technique which avoids a large part of unneces-
sary triangulation of the surface of the 3-D hull. The technique can be extended to higher
dimensions. We observed that a minor repair in the perturbation, not the change in the

. 161
algorithm itself, can have the significant gain in computational costs. :

In the following section we study the problem of surface degeneracy and propose a minor
modification of SoS which successfully eliminates a large part of surface-degenerate points.
The key idea is to number input points in such a way that one of three surrounding points (in
Figure 1, A, B or C) have a small number and to move it further away from the inside of the
hull than other three points, including a surface-degenerate point D.

2 OQOur Approach

2.1 Preliminaries

Let P = {po,p1,-*,Pn-1} be a set of n geometric objects in d-dimensional space
pi = (Wi,lvwiﬂv""ri,d)’ 0 < : <n-1

The orientation of a d + 1 point sequence {p;,,p;,, - -,pi,} decides in which side of the
halfspace, spanned by p;y,pi,,- -, Pi,_,, the query point p;, lies (we assume ip < i) < -+ < iy
without loss of generality). These d + 1 points are degenerate if all of them lie on the same
hyperplane, and otherwise they are non-degenerate, or called simple. Orientation can be
decided by a test of a determinant sign of the following matrix.

7ri0 »1 7”0 2 o 7ri01d 1
7ril »1 7r'1 2 Tt 7l“il d 1
Agy1 = . . .
Tigl Tig2 *°* Tiga 1

The sign of [A441] is 0 if d + 1 points are degenerate, and +1 otherwise.
SoS replaces each coordinate by a polynomial in ¢, a positive infinitesimal variable. Every
coordinate m; ; is perturbed into

mii(€) = mij+€(,5) (1)

G(i, J) = 52‘.6—’. ’

where § > d. p;(¢) and P(¢) are the new object and the new set created by this perturbation.
They are called e-expansion of the original object p; and set P.
A symbolic perturbation technique should satisfy two requirements.

1. P(e) must be simple if € > 0 is sufficiently small.

2. P(¢) must hold all nondegenerate properties of P. For any primitive function PF,
PF(P) = PF(P(e)) if P is not degenerate.

The € expansion of Ayy; is defined as follows:

) 24061 ig-6—2 ig-é6—d
Tio,1 +¢€ Tio,2 + 62 Tio.d + 62
$y-6=1 £1:6=2 $y-6—d
Ti1 + €2 Tiy2 + € cee Wi+ €2 1
Ad1(e) =))))
ig-6=1 ig-6—2 ig-6—d
Tig1 + €2 Tig2 + €2 Tigd + e 1

162
2.2 Eight-way perturbation

We propose a variant of (1):

mij(€) = mi;+e(,]
»J() W] + (:'(l]) g6 (2)

€(i,j) = b-sign(m;j)-¢€ ,
where b-sign is a biased sign function such that

wome = { 11 €20

Lemma 2.2.1 this perturbation meets two requirements mentioned above with regard to the
primitive operation that determines the orientation of a sequence of d+ 1 points by computing

Ad-l-l .

We will show the outline of the proof.

If we rewrite Agyi(€) in terms of the subdeterminants of Ag444, it becomes the sum of a
finite number of terms, each of which is the product of a coefficient, which is a subdeterminant
with a possible change in sign, and a so-called e-product, a product of zero or more €(%, j)s.

It is trivial that the second requirement is met if € is small enough. The satisfaction of
the first requirement can be proved essentially in the same way as is done in [3]; it is proved
from two observations, one is that e-products can not cancel out each other, the other is that
at least one term has the coefficient of 1. The readers should be referred to [3].for more
elaborate explanation.

However, it is worthwhile to mention that € can be small enough (but not zero) to com-
pensate the influence of the coefficients as long as they are constants. Other choices of €(z,)
could be used, which leads us to other perturbation techniques.

So why choose (2)? The difference from original perturbation of SOS (1) is that the
direction of perturbation applied to a point varies according to the relative position of the
point to the origin. The amount of perturbation added to m; ; will be positive if 7;; > 0 and
negative otherwise. Intuitively, a point is perturbed as if it ‘escapes’ from the origin.

Hereinafter, we fix d to 3 and consider only the application of our perturbation technique
to three-dimensional convex hull construction. (See Figure 2 for an intuitive illustration of
our perturbation technique in three dimensions.) Also we assume that the origin is inside
of the resulting hull. Appropriate preprocessing of input data will meet this condition. The
direction of perturbation of two points will be same if both are in the same octant and different
otherwise. This is an important property of our perturbation technique.

Figure 2: Our perturbation technique in three dimensions

2.3 Behavior of Our Perturbation

This section shows how our perturbation eliminates most of surface-degenerate points in the
course of hull construction, with the help of appropriate indexing of input points.

Lemma 2.3.1 The amount (L, distance) of the perturbation erperienced by the j-th coordi-
nate of a point labeled with an indez i, is larger than that of a point labeled with i, if and only
if 11 < iz, where 11,12, are positive integers.

Proof |e(i1,§)| = €277 > 22777 = |e(ig,)| if0 <€ < 1.

This lemma implies that you should label a point with a small index if you want to make it
“remains” on the surface.

Suppose that four points ¢1, ¢2,¢3 and ¢4 in the same octant O are coplanar (thus, degen-
erate points) and g4 is inside the triangle formed by ¢;, ¢z, ¢q3. Also assume the intersection of
O and the plane @) defined by q;,¢2 and g3 is bounded. This is not a restrictive assumption
when we are considering the triangle formed by ¢, g2 and ¢3 as a facet of the resulting hull.

Theorem 1 If these four points ¢;,q2, g3 and q4 are numbered in the decreasing (or increasing)
order of z-coordinate and our perturbation (2) is applied, q4 will be perturbed inside. That is,
¢4 and the origin are in the same side of Q.

Proof g4 can never be labeled with the smallest number of the four since it is inside of the
triangle formed by ¢1,¢; and ¢3. Say gx (1 < k < 3) is labeled with the smallest
number. By lemma 2.3.1, a perturbation experienced by q; along the z axis is the
largest one. Since € can be arbitrarily small, the largest perturbation will obscure other
perturbations. g; will be perturbed in such a way that it escapes from the origin. Thus
lemma 1.

| very

Figure 3: Eight-way perturbation applied to a convex hull
Fig. 3 shows a convex hull with eight degenerate points on its surface. This hull is constructed

163

after input points are processed by our eight-way perturbation technique (2). All of eight -

surface-degenerate points are perturbed inside and do not triangulate the surface. If SoS is
used, four of them will remain on the surface.

3 Discussion

Surface-degenerate points will be or will not be perturbed inside when (1) their surrounding
vertices belong to different octants, or (2) the plane coplanar with the surrounding triangle is

164

not bounded by the octant which the triangle belongs to. We must be careful in the choice
of the origin not to increase the number of facets that satisfies condition (1) or (2). If the
origin is set too close to the surface, the number will rise. We need a scheme that allows us to
position the origin satisfactory near the true center of the hull prior to the hull construction.

As mentioned in the Introduction, a situation may arise in which we wish to have some
control over the behavior of perturbations. Our work can be one of the first attempts to
meet this need. Apparently, our technique can be used in the applications other than hull
construction and can be used in the space of more than three dimensions, as long as the concept
of “outward” can be defined. By negating b-sign, we get “inward” perturbation, which may
be useful if we wish to detect all the surface-degenerate points.

References

[1] Day, A.M. “The implementation of an algorithm to find the convex hull of a set of three-
dimensional points,” ACM Trans. on Graphics, Vol 9, No 1 (Jan. 1990), pp.105-132.

[2] Day, A.M. “The implementation of a 2D convex hull of algorithm using perturbation, ”
Computer Graphics Forum, Vol 9 (1990), pp.309-316.

[3] Edelsbrunner,H., and Miicke, E. “Simulation of Simplicity: a technique to cope with de-
generate cases in geometric algorithms,” Proc.4th Annual Symposium on Computational
Geometry (1988). ‘

[4] Preparata, F.P., and Hong, S.J. “Convex hull of a finite set of points in two and three
dimensions,” Commun. ACM 20, 2 (Feb. 1977), pp.87-93.

(5] Yap, C.K., “A geometric consistency theorem for a symbolic perturbation scheme,”
Proc.4th Annual ACM Symposium on Computational Geometry (1988), pp.134-142.

(6] Yap, C.K., “Symbolic treatment of geometric degeneracies,” Lecture Notes in Control and
Information Science, 113, pp.348-358.

