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(Extended Abstract)

1. Introduction

The problem of surface representation occurs in a variety of disciplines, including computer graphics, computer-
aided design (CAD) and geographic information systems (GIS). In this paper we restrict ourselves to surface repre-
sentations in geographic applications. In this area the reconstruction of the topography is needed for three-dimen-
sional map design, terrain modeling (e.g. in conjunction with CAD) or feature analysis requiring three-dimensional
data (e.g. for solving hydrographic problems).

Given a set of topographical daia, we want to reconstruct the shape of the surface at a variety of predefined resolu-
tions. In mathematical terms, the reconstruction process at a fixed level of detail can be considered as the interpola-
tion of a function of two variables. Our topographical data is given as a finite set of three-dimensional points
V = {(x,y,2) € R}z =H(x,y)} representing the height z = H(x, y) of the surface at each coordinate point (x,y).
This set S of two-dimensional points (x, y) may be distributed in the plane non-uniformly. In addition, we assume the
existence of a set L of non-intersecting line segments describing surface-specific features like coast-lines, river banks,
ridges (i.e. lines connecting peaks with passes) or valleys. We assume that the endpoints of the line segments are ele-
ments of S, and no point of S lies in the relative interior of a line segment, i.e. the line segments may only intersect in
their endpoints. The set L provides constraints for the surface-reconstruction process. Since we use triangulations to
reconstruct the surface the constraints help us to preserve the surface-specific features. Without these constraints tri-
angles are created whose edges cross characteristic lines of the surface. These triangles produce undesirable errors in
the reconstructed surface (e.g. rivers flowing over little hills, etc.).

We consider the surface at different levels of detail to provide a significant data reduction for low resolutions which is
useful for browsing very large data sets. The use of a hierarchical structure allows a tree-like traversal of the gener-
ated levels and therefore supports zooming in a given part of the surface without browsing large lists of triangles.
Many hierarchical surface models and related data structures have been proposed (see [Fl089] and [Flo87] for a sur-
vey) including temary hierarchical triangulations [PF87], [Flo84], quatemnary hierarchical triangulations
[BV84],[GG79], quadtree-based models [CT86], [SG85] and other triangulation methods like [SP92]. Most of these
models use triangulations of the given point-data to reconstruct the surface but none of them considers the existence
of constraints for the reconstruction process. Furthermore, some models suffer from the requirement of regularly
sampled data points (quadtree-based models, quaternary hierarchical triangulation and [SP92]) or from triangulations
which contain elongated triangles and therefore cause numerical instability during interpolation (ternary hierarchical
triangulation).

A “good” model should allow non-uniform data distributions and should be based on an “optimal” triangulation, i.e.
a triangulation where the resulting triangles have a regular shape. A well known triangulation of this kind is the
Delauney triangulation [PS85]. A hierarchical data structure for multiresolution surface reconstruction based on the
Delauney triangulation is the Delauney pyramid [Flo89]. Since the Delauney pyramid cannot deal with the con-
straints defined by a set of line segments, we introduce the constrained Delauney pyramid.

2. The constrained Delauney pyramid

2.1 Basic definitions

The set L of line segments can be described by a constraint graph G, on the given set S of vertices, i.e. two points s
and ¢ are connected by an edge in G if and only if st € L . We present the constrained Delauney pyramid, a multires-
olution surface model based on the Delauney pyramid, and its underlying data structure. The constrained Delauney
pyramid represents surfaces at multiple resolutions and considers the constraints during the reconstruction process.
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Two vertices s and ¢ of the constraint graph G are called mutually visible if and only if either st = @ forall line
segments /€ L orif st€ L.

Similar to the (standard) Delauney triangulation we may now define the constrained Delauney triangulation by the
constrained circumcircle property: A constrained triangulation CT, i.e. a maximal planar straight line graph which
contains G, as a subgraph, is a constrained Delauney triangulation CDT if and only if no vertex which is mutually
visible to each vertex of a triangle ¢ € CT lies inside the circumcircle of triangle . Algorithms to compute con-
strained Delauney triangulations are presented in [Che89], [FP92] and [MV93].

A constrained Delauney sequence CDS = [CDTy, ..., CDT,,] is a sequence of constrained Delauney triangulations

with the following properties:
1. CDT;is a constrained Delauney triangulation of subsets S; < S and L; = {ste L|s,t€ S, &+
i=0,...m

2. §;,_,€S,,i=1,...m
3. E(CDT)<g;,i=1,...m, where g; denotes the predefined maximum error at level i
4. E(CDT) SE(CDT 1) i=1,...m
Starting with an initial triangulation CDTo, we obtain each constrained Delauney triangulation CDT;, ; from its pre-
decessor by inserting points into S; until property 3 is satisfied. The constraints must be inserted if the corresponding
endpoints have been included in the triangulation. To maintain the constrained Delauney triangulations during the
insertion of points and line segments we use the algorithm of [FP92]. This algorithm computes the constrained
Delauney triangulation for sets S’ = SU {p} and L’ = LU {I/} based on a constrained Delauney triangulation
for sets S and L. Only local modifications are required to obtain the new triangulation.
The relationship between two consecutive triangulations DT;_; and DT; is given by the following two difference sets.
The difference set D;_; between DT; ; and DT} is the set of all triangles of DT;; which do not belong to DT,, i.e. the
union of all triangles violating the circumcircle property due to the point set S\ S; _; . The difference set D/ between
DT; and DT}, is the set of all triangles of DT; which do not belong to the predecessor DT;,.
A Delauney pyramid CDP is the representation of a Delauney sequence CDS = [CDT), ..., CDT,,] having the follow-
ing properties:
1. CDT,is the top level of CDP
2. Leveliin CDP corresponds to CDT;
3. Each triangle # of CDT;_; which does not belong to D, , is contained in CDT;. We connect these
identical triangles of CDT;_; and CDT; by a conceptual link.
Each triangle ¢ of D; ; is replaced in CDT; by the subset of triangles of D;’ intersecting 1. Triangle ¢ is
connected with each element of this subset by a conceptual link.
To store the constrained Delauney pyramid in main memory, we use a modified winged-edge representation of the tri-
angulations ([Flo87], [Vo93], [Wei85] or [Wo085] give a survey of data structures for representing triangular grids).

2.2 Generalization of constraints

Since the line segments are defined for the finest resolution of the data points, only few constraints will be inserted
into the triangulations at coarse resolutions. This results in a loss of information of the topography for many levels.
To prevent these errors, we have to generalize the constraints in order to obtain a generalized constraint graph for
each resolution. These generalized constraints are used to construct the final pyramid.
During the generalization process we search for paths in the constraint graph G, connecting points a and b which
have already been inserted into the triangulation. If such a path is a proper candidate path (see definition in properties
1 and 2 below) and is close to edge ab (property 3), ab is said to be a generalized constraint for this path. A candi-
date path may be formed by several pieces which are separated by small gaps representing for example small valleys
(property 1). These gaps do not affect the shape of the reconstructed surface at coarser resolutions. The candidate path
needs not directly connect a and b. It is sufficient if the path intersects a circle around points a and b (property 2). Fur-
thermore, the path must be close to the generalized edge (property 3). We now define these properties formally. Let
U(e) denote a circle around a vertex of the triangulation at level | whose size depends on the corresponding maximum
error €; .
1. Property: candidate paths

Let P = cy,...,c, beapathof G.and let ¢, € S;, | <j <n. P is said to be a candidate path.

LetQ =d,, ... d be another candidate pathandlet cpdi€S;.

* PQ=cy,..., ....d,, is a candidate path if ¢, € U(d,),i.e. d| € U(c,).

* PQ =cp.en d wod, ad PQ,=cy,...c,dy,....d, are candidate paths, if

m m

dldan(c )¢¢ andeltherd € Ulc,),d, € U(c,) ord, € Ulc,). d, € Ulc,).
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(a)

Figure 1: Properties for generalized constraints.

2. Property: proper candidate paths
Let P = cy, ..., c, bea candidate path and let ¢,, ..., #;, be Delauney triangles forming a convex poly-
gon R defined by the set of vertices {a,, ..., a;} € S;. Let none of the diagonals of R be a constraint.
If there exist two vertices a;, a; (i * ) such that El_cz NU(@)*®P and c,_,c,N Ula) * @ we call
path P a proper candidate path for vertices a;, a ;€ S; (see figure 1(a) and figure 1(b)).
3. Property: generalized constraint
Let P = c|, ..., c, be a proper candidate path for vertices a, b € §;. Let dist(c, ab) denote the dis-
tance of point c to edge ab and let Y = Y(g,;) denote an error value depending on the error value ; of
the current level.
If P satisfies dist(cj, ab) <Y = Yg), 1 <j<n, the proper candidate path P may be generalized by
edge ab in the current level (see figure 1(c)).
We split the computation of the generalized constraints into a preprocessing step and a search process.
Let G,  be the subgraph of the constraint graph G, consisting of all constraints, i.e. line segments and their corre-
sponding endpoints, which have not yet been inserted into the triangulation. Starting with G.’, a search graph SG is
built by performing the following transformation steps (i is the current level of the pyramid):
1. (corresponds to property 1 - “candidate paths™)
Let / = ab andlet I' = cd be two disjoint edges of G,” with x "\ U(s) = @ forall x€ {a, b, c, d}
and forall s€ S;.Let ' N U(@)=D. _
(@ IfcnU@=*P butdnU(a) = P, we add the edge ac in SG.
® IfcnU@=*®D and d " Ua)* D, we add the edges ac and ad in SG.
© IfcnU@) =@ anddnUa) = ¢,weaddthcedges ac and ad in SG.
2. (corresponds to property 2 - “proper candidate paths”)
(@) Eachvertexaof G.' with a€ U(s), s€ §; is replaced by s in SG, i.e. s is inserted into SG if it is
not yet contained in SG, and all vertices of SG which were connected to a are now linked to s.
(@) Eachedge! = ab of G/ withanU(s) = bNU(s) = @ forall s€ S and [ N\ U(s) * D for
at least one s € S, is replaced by edges as and bs in SG.
All edges of G,” which are not modified by these transformation steps remain unchanged in SG. All vertices of SG
contained in S; are marked, all other vertices of SG are not marked.
Since the size of the circles U(+) depends on the level i of the pyramid, we have to recompute the search graph each
time we construct a new level of the pyramid. When creating a new level of the pyramid step 1 in the computation of
the search graph is performed by testing the edges of G.” against each other and step 2 is performed by testing each
edge/vertex of G’ against each vertex in S;. While constructing level i+/ of the constrained Delauney pyramid, the
search graph can be updated after each point insertion by computing the difference to its predecessor.
The search for the generalized constraints is performed by a depth first search on the search graph SG. In SG a gener-
alized constraint between vertex p and vertex q is represented by a path connecting p and q which satisfies property 3
(generalized constraint). The construction of the search graph SG implies that properties 1 and 2 are always satisfied.
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Let p be the last point which has been inserted into the triangulation during the reconstruction process. By applying a
depth first search-type algorithm we search for paths in SG starting at point p and ending at any marked vertex g of
SG. These paths have to satisfy property 3 (generalized constraint), i.e. we only have to consider edges e such that
dist(a, pq) < for each endpoint a of e. Paths found by this algorithm may be generalized by edge pq . In addition
we have to check whether the generalized constraints are disjoint with the “real” constraints, i.e. the edges of G,
which have already been inserted into the triangulation. Since generalized edges are less important and the constraints
may intersect in their endpoints only, we have to delete all generalized constraints intersecting “real” constraints. A
detailed algorithm can be found in [Vo93].

We already mentioned above that the constraints must be inserted into the triangulation if the corresponding end-
points have been included. The generalized constraints are inserted after the “real” constraints. Therefore we have to
check for intersection of “real” and generalized constraints after computing the generalized constraints. During the
triangulation process the generalized constraints are treated like “real” constraints. But if we insert a constraint
(“real” or generalized) intersecting a generalized one which has been inserted earlier this generalized constraint is
removed from the set of generalized constraints appearing in the triangulation.

The size of the surroundings defined by U(*) and y depends on the maximum error €; but not on the data set which is
processed and may be chosen unsuitably for a specific data set. Since a data dependant definition is not possible and
the generalization is a heuristic approach we may produce local errors.

Finally, we determine the worst case time complexity for the computation of a constrained Delauney pyramid. The
number ! of constraints depends on the number 7 of vertices. The number m of levels in the pyramid is a small and
cons3tant value independent of n. It can be shown that the computation of a constrained Delauney pyramid requires
O(n”) time.

3. The constrained Delauney pyramid in database systems

Topographic data sets usually consist of a large number of data items (e.g. topographic data derived from remote
sensing data). The geographic information system which is used to access the topographic data stores these data sets
in an underlying database system. If we use the constrained Delauney pyramid to browse and zoom in such sets of
geometric data, the size of these data sets may exceed the main memory size. Hence we have to provide secondary
storage structures and algorithms working on such structures to integrate our multiresolution surface model into a
database system.
Geographic information systems offer browse- and zoom-operations on geographic data sets. Hence, we assume that
the given sets of point elevation data and line segments are stored using appropriate spatial data structures for geo-
metric objects e.g. quadtree [Sam90b], R-Tree [Gu84], R*-Tree [Be90] or grid file [NHS84]. We propose to use a
modified R*-Tree to store the triangles and edges of the generated triangulations. Since we do not want to store the
point data twice, we further assume that we can access the point elevation data via tuple identifiers.
As presented in [Vo93] there is an upper bound for the size of a constrained Delauney pyramid in main memory. If the
given data set and the resulting main memory structure of the constrained Delauney pyramid fit into main memory,
we compute the pyramid as presented in section 2. In a second step we transform the resuiting pyramid into the for-
mat needed for the secondary storage data structure and write the data to disk. If the given data set and the resulting
constrained Delauney pyramid do not fit into memory, we compute several parts which fit into memory and combine
these parts. We use a divide-&-conquer algorithm for the stepwise construction of the constrained Delauney pyramid.
In the following we assume that the topographic data (i.e. the set S of points and the set L of line segments) are stored
in a database using spatial data structures. For our purposes we further assume that the spatial data structure used to
store the point data performs a quadtree-like subdivision of the data space (a comprehensive overview on spatial data
structures is given in [Sam90a] and [Sam90b]). Since the divide-&-conquer paradigm requires to divide the given
data set efficiently, we assume that there is a function which enables splitting the given data set on the internal bound-
aries of the data structure.
The divide-&-conquer algorithm can be described by the following steps:
» Divide phase (divide the topographic data)

Let 3 be an index set. We consider a rectangular subdivision of the data space which induces a parti-

tioning of S into pauwmc disjoint sets S¥, k€ 3. The set L of line segments is divided into sets

Lt k€ 3 where L* contains all constraints ab with a € St or b € St. Obviously, these subsets fulfill

the property § =, g S L=U,cq Lk Since the upper bound of memory consumption of a con-

strained Delauney pyramid can be esnmated based on the size of the sets S¥, L* (see [Vo93] for further

details), we can choose the subsets S, L* small enough such that their (constrained) Delauney pyramid

can be computed in main memory.
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For each k € 3 : Compute the (constrained) Delauney pyramid of S, L* in main memory and store the
resulting data structure on secondary storage.
*  Merge phase
Perform a merge of the (constrained) Delauney pyramids on secondary storage.
In the merge phase the algorithm merges the triangulations of the pyramids level by level starting at level 0. To merge
two triangulations, we use the algorithm presented in [MV93] which is an extension of the merge algorithm for con-
strained Delauney triangulations presented in [Che89]. This extension fixes several problems of the original algo-
rithm. Details can be found in [MV93], [Che89] and [LS80]. '
Let ' and S” denote the point data of the triangulations to be merged. We call a € S* visible from S if there is a
b€ S with the property ab ¢ = @ for all triangles 7 in the triangulation of 5"
To merge two triangulations, it is sufficient to load the set T = T, U T, of required triangles into main memory. 7,
consists of the following triangles:
* Al triangles at the current level of the pyramid having at least one vertex which lies on the boundary
of the convex hull of $” and is visible from S".
*  All triangles ¢ in the triangulation of S” such that there is a point of §' lying inside the circumcircle of 7.
* All triangles in the triangulation of S” intersected by a constrained edge / = ab with a € S’ and
be St
* Al triangles in the triangulation of S” sharing at least one edge with a triangle chosen by the criteria
above. This is required due to the merge algorithm of [LS80] which is part of the merge algorithm pre-
sented in [MV93].
Since we use a merge algorithm for constrained Delauney triangulations we have to insert all constraints (“real” and
generalized) connecting the two partial triangulations into both triangulations and then we have to apply the algo-
rithm of [MV93] to merge the triangulations. Let G’ be the subgraph of the constraint graph G, consisting of all line
segments / € L/ U L" which intersect the set T of triangles defined above and have not yet been inserted into the tri-
angulation. The subgraph G’ is used to search generalized constraints between the triangulations of S and S as fol-
lows: For each level k of the pyramid processed by the merge step we use Gc_'__to compute a search graph SG
according to the rules presented in section 2. We search for generalized constraints ab by applying the search method
presented in section 2 to the search graph SG. The endpoints a and b of the generalized segment must be chosen from
the point sets S’ and S, i.e. a€ S! and b € S’ or vice versa.
The whole merge process of two constrained Delauney pyramids may be described by the following algorithm:
For each level i of the pyramid do:
¢ Let T, T, be the sets of triangles as defined above, and let S )< S, S AT,) < S" be the correspond-
ing sets of vertices. Load these sets into main memory.
*  Let L! be the set of “real” constraints / = ab with a € S(T) and b€ S/(T,). Remove all triangles
from T, T, intersected by any /€ L!.
Insert each / € L! into both triangulations.
*  Let L? be the set of generalized constraints computed by the method presented in the previous para-
graph. For each / € L2: If / does not intersect any “real” constraint then remove from both triangula-
tions all previously inserted generalized constraints which intersect /. Further, remove all triangles
from T}, T, intersected by /, and insert / into both triangulations. If / intersects any “real” constraint,
discard /.
¢ Use the algorithm presented in [MV93] to merge both triangulations.

4. Conclusions

We have presented a multiresolution surface model called constrained Delauney pyramid which reconstructs a given
topographic surface at a variety of predefined resolutions. Since our model is based on processing point elevation data
and linear surface features a “good” reconstruction of the original surface is achieved for each level of detail.
Delauney triangulations allow us to process non-uniformly distributed point sets and result in triangulations with only
few non-regularly shaped triangles.

Since geographic information systems store very large sets of topographic data, we presented a method for construct-
ing a constrained Delauney pyramid on secondary storage by a divide-&-conquer approach. The integration of our
model and its underlying data structure into an existing database system allows different users to browse and zoom on
the data structure concurrently without having to recompute the triangulations.

The main benefit of the constrained Delauney pyramid for the surface reconstruction process is the generalization of
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the constraints which are given for the finest resolution. Using the constraint generalization characteristic topographic
features are also visible at coarse resolutions. We defined three properties how to derive generalized constraints from
the original set of line segments. Due to the fact that the process of generalization is not mathematically exact, our
generalized constraints may be inaccurate in specific situations and may therefore produce local errors in the triangu-
lations. We are currently implementing the constrained Delauney pyramid. This implementation will include the
implementation of the pyramid as a search structure for an extensible database system. Using the implementation we
plan to apply our model to real-world data and to assess the constraint generalization. These experiments will help to
determine the exact size of neighborhoods U(*) and error values y depending on the predefined maximum error for
each level of the pyramid.
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