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Abstract

We consider the problem of recognizing star-polygons under stair-case visibility (s-visibility).
We present an algorithm for computing the s-kernel of a polygon in O(n) time for simple or-
thogonal polygons and in O(n?) time for orthogonal polygons with holes; both complexities
are optimal in the worst case. Finally, we report the main result of this paper: we show that
even though the s-kernel of a polygon with holes may have Q(n?) components it is possible to
recognize such polygons in O(nlogn) time.

1 Introduction

We consider the problem of computing visibility polygon, the problem of computing kernel, and
the problem of recognizing star polygons under stair-case visibility (s-visibility). One motivation
for considering these problems is the usefulness of s-visibility for developing polygon covering al-
gorithms. For example, the minimum star cover of a simple orthogonal polygon under s-visibility
can be computed in O(n®) time [MRS90], although the same problem is NP-hard under standard
visibility [087]. Other motivation comes from the applicability of monotone paths in manufacturing
[BT92], and s-visibility is based on monotonicity in two perpendicular directions.

Perhaps the main contribution of this paper is the demonstration that a s-star polygon, possibly
containing holes, can be recognized in O(nlogn) time even though its s-kernel can have Q(n?)
components. Our results can be summerized as follows: (a) We present an O(n) time algorithm
for computing the s-visibility polygon from a point inside a simple orthogonal polygon. (b) For
orthogonal polygons with holes, we show that s-visibility polygon from an interior point can be
computed in O(nlogn) time. We prove this time complexity to be optimal by linear time reduction
from the sorting problem. (c) We give a simple construction for converting an instance of computing
s-visibility from an exterior point to an instance of computing s-visibility from an interior point.
(d) We present an algorithm for computing the s-kernel of orthogonal polygons. The algorithm
computes the s-kernel in O(n) time for simple orthogonal polygons and in O(n?) time for orthogonal
polygons with holes. Both complexities are optimal in the worst case. (e) Finally, we show that
s-star polygons with holes can be recognized in O(nlogn) time.

2 Preliminaries

The input orthogonal polygon @, whose edges are parallel to coordinate axes, is given as an ordered
sequence of vertices v, vy, v2,v3,...,Us_1, in the order in which they occur along the clockwise
traversal of its boundary. A stair-case path is a path consisting of line segments parallel to the
z or y coordinate axes such that any horizontal or. vertical line intersect with at most one line
segment of the path. Stair-case paths can be categorized into two types: (a) a type I stair-
case path extends from south-west to north-east, and (b) a type II stair-case path extends
from south-east to north-west (Figure la-b). Two points are said to be (s-visible) if they can be
connected by a stair-case path without intersecting the exterior of the polygon. A polygonal path



184

is monotone along a given direction d if any line perpendicular to d intersects with at most one
line segment of the path. An orthogonal path having monotonicity along the z-axis direction is
called an x-monotone path. Similarly, y-monotone path is defined. In term of monotonicity, a
stair-case path can be viewed as an orthogonal path having monotonicity in both x-axis and y-axis
directions. A maximal boundary chain of an orthogonal polygon which is also a type I stair-case
path is referred to as a type I boundary s-chain. Similarly, a type II boundary s-chain is
defined. In Figure le, chain (vs,vg,...,14) is a type I boundary s-chain and chain (v17, 118, V19)
is a type II boundary s-chain. The boundary of an orthogonal polygon can be partitioned into
the above two types of s-chains. A horizontal or vertical line segment inside the polygon with end
points at its boundary is a chord of the polygon.

The visibility polygon from a point can be defined in terms of x-monotone path, y-monotone
path, or stair-case path. The x-monotone visibility polygon ( respectively, the y-monotone
visibility polygon) from a point g is the set of points that can be connected to g by a x-monotone
path (respectively, y-monotone path). Similarly, s-visibility polygon from a point is the set of
points that can be connected to ¢ by a stair-case path. Figure 1 illustrates the above three types
of visibility polygons. Let V*(@), V7(Q), and VY(Q) denote the s-visibility polygon, x-monotone
visibility polygon, and y-monotone visibility polygon, respectively, from a point ¢ inside polygon
Q. Due to space limitation, we omit proofs and running examples in this extended abstract.
Lemma 1: [GG93] The s-visibility polygon V;*(Q) is given by the intersection of the x-monotone
visibility polygon V.7(Q) and the y-monotone visibility polygon V¥(@Q). (Proof omitted)

Lemma 2: [GG93] V;*(Q), the s-visibility polygon from a point ¢ inside an orthogonal polygon @,
is an orthogonal polygon.(Proof omitted)

3 Algorithms for Computing s-Visibility Polygon

In this section we develop an algorithm for computing the s-visibility polygon from a point inside
an orthogonal polygon. An overview of the algorithm can be stated as follows: (i) We first compute
R = VF(Q), the x-monotone visibility polygon from point ¢ for polygon Q. (ii) We then compute
the y-monotone visibility polygon from point ¢ for polygon R, which is precisely the required
s-visibility polygon V;(Q) (Lemma 1).

Theorem 1: [GG93] The s-visibility polygon from a point inside a simple orthogonal polygon can
be computed in O(n) time. (Proof omitted)

The results of Theorem 1 can be generalized in a straightforward way to include polygons with
holes. When holes are present trapezoidization can not be computed in O(n) time. We need to
use an O(n log n) time algorithm [FM84]. All other steps have the same time complexity as for the
case of a polygon without holes and the total time complexity becomes O(n logn).

Theorem 2: The s-visibility polygon from a point inside a polygon with holes can be computed
in O(nlogn) time. (Proof omitted)

The time complexity stated in Theorem 2 is optimal, within a constant factor. This fact can be -
established by demonstrating that the sorting problem can be reduced in linear time to the problem
of computing s-visibility polygon from a point inside a polygon with holes.

Theorem 3: Sorting is linear time, transformable to the problem of computing the s-visibility
polygon from a point inside a polygon with holes. Therefore, finding the s-visibility polygon from
a point inside a polygon of n vertices with holes requires Q(nlogn) time. (Proof omitted)
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4 Computing s-Kernel and Recognizing s-Star Polygons

Under standard visibility, the kernel of a polygon @ is the set of points from which all points inside
() are visible. The kernel of a polygon may be empty or non-empty and a polygon with non-empty
kernel is called a star polygon. A linear time algorithm for computing the kernel of a polygon
under standard visibility has been reported [LP79]. We consider the star-shape property under
s-visibility. An orthogonal polygon is a s-star polygon (or simply s-star) if it contains a point from
which all other points inside the polygon can be connected by a stair-case path, and the set of such
points is its s-kernel. shows examples of s-star polygons. It is interesting to note that whereas
star polygons are always simple, s-star polygons may contain holes (Figure 2b). Also, although the
kernel of a polygon is always connected and convex, a s-kernel need not be connected.

Imagine partitioning polygon ) into rectangles by extending its edges into its interior. Observe
that the s-visibility polygons from points on the same rectangle are identical. Hence a straight
forward way to recognize an s-star polygon is to compute the s-visibility polygon from a point on
each rectangle and accept the polygon as s-star if the whole polygon is visible from at least one
rectangle. Since there can be potentially Q(n?) rectangles, this approach requires O(n>) time, which
is rather expensive. To develop an efficient algorithm we start with few definitions. If we traverse
the boundary of a simple orthogonal polygon in the clockwise direction, keeping the interior to
the right, then at the vertex of the polygon we either turn 90° right (outside corner) or 90° left
(inside corner). An edge of an orthogonal polygon whose both ends are inside corners is referred
to as a dent [RC87]. The direction of dent traversal gives its orientation which we indicate as N,
S, E, and W dents. In Figure 4a, edges (a,b), (c,d), (e,f), and (g,h) are N, E, S, and W-dents,
respectively. The s-kernel can be captured in terms of critical chords. An east critical chord is
the chord passing through the left most E-dent; if there is no E-dent then the unique right most
vertical edge is taken as the east critical chord. Similarly, west critical chord, south critical
chord, and north critical chord are defined.

Lemma 3: A simple orthogonal polygon is an s-star polygon if and only if the following two
conditions are satisfied: (a) The x-coordinate of the east critical chord is greater than the x-
coordinate of the west critical chord, and (b) The y-coordinate of the north critical chord is greater
than the y-coordinate of the south critical chord. (Proof omitted) ’

Theorem 4: The s-kernel of a simple orthogonal polygon can be computed in O(n) time. (Proof
omitted)

We next consider s-visibility in the exterior of the polygon. A simple orthogonal polygon is
an external s-star if there exist a point from which all points in the exterior of the polygon are
s-visible.

Theorem 5: An externally s-star simple orthogonal polygon can be recognized in O(n) time.
(Proof omitted)

We now consider the problem of computing the s-kernel of orthogonal polygons that may contain
holes. For a polygon with holes we use the term “chord” to indicate only those horizontal or vertical
line segments inside the polygon whose both end points are on the outer boundary of the polygon.
This means that horizontal or vertical line segments inside the polygon with end points on the
boundary of holes are not taken as chords. A prime chord is a chord that contains an edge of
the polygon. Prime chords partition the polygon into rows and columns of rectangular blocks and
each such block is referred to as an elementary block. The partitioning itself is referred to as
prime chord partitioning. A row of elementary blocks is called a horizontal corridor if no
block in the row encloses a hole; if some elementary block of the row encloses a hole then that
row is called a horizontal strip. Similarly, vertical corridor and vertical strip are defined.
We number rows from top to bottom. The i* horizontal corridor and the ** horizontal strip are
denoted by C; and H;, respectively. The jt* elementary block in C; and H; are denoted by C;;
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and H, ;, respectively. A corridor intersection is an elementary block formed by the intersection
of a vertical and horizontal corridor. Note that corridors and strips occur alternately. Corridor
intersections are feasible regions to be a part of the s-kernel.

Lemma 4: An orthogonal polygon containing holes is s-star if and only if it is s-visible from one
of the corridor intersections. (Proof omitted)

We may use Lemma 4 to check for the s-star shape property of polygon @ by computing the
s-visibility polygon from a point on each corridor intersection and we report the polygon to be
s-star if the s-visibility polygon from some corridor intersection is the entire polygon. The time
complemty of the algorithm designed by employing this strategy is rather high. Since there can be

O(n?) corridor intersections and the s-visibility polygon computation from a point takes O(nlogn)
time, the total time becomes O(n3logn).

To develop a faster algorithm we identify corridor intersections satisfying certain visibility prop-
erties. A corridor intersection C;; is said to cover Hy if all points in Hy are s-visible from C; ;.
Let S(i,7) = {Ci;| Ci; is a cover for H; }. A corridor intersection is a top covering rectangle
if all points in the polygon lying above it are s-visible from it. Similarly, a bottom covering
rectangle is defined. We use T; and B; to denote the set of top covering rectangles and the set of
bottom covering rectangles, respectively, in corridor C;. Let BT(Q) and TB((Q) denote the corridor
rows of @} containing the bottom most top covering rectangles and the top most bottom covering
rectangles, respectively.

Lemma 5: An orthogonal polygon @ containing holes is s-star if and only if BT(Q) is not above
TB(Q). (Proof omitted)

Theorem 6: The s-kernel of an orthogonal polygon with holes can be computed in O(n?) time.
(Proof omitted)

Examples can be constructed to show that an orthogonal polygon with holes may contain Q(n?)
components. The O(n?) algorithm for computing s-kernel could be used to recognize s-star polygons
with holes. It is interesting to develop sub-quadratic time complexity algorithms to recognize s-star
polygons with holes, without having to output its s-kernel. The main bottle neck in this direction
is the size of the planar graph formed by the polygon and the intersection of prime chords. The
approach used to compute s-kernel is the computation of top coverm§ ectangles (and bottom
covering rectangles) for each horizontal corridor. Since there can be O(n*) top covering (or bottom
covering) rectangles in total, it is not possible to come up with a sub- quadratxc time algorithm by
explicitly maintaining covering rectangles.

We next consider how to develop a sub-quadratic time complexity algorithm to recognize s-
star polygons with holes. We define the upper x-extent (respectively, lower x-extent) of a
polygon to be the upper horizontal edge (respectively, lower horizontal edge) of its bounding box.
Our algorithm is based on computing the lower x-extents of top covering rectangles (and upper
x-extents of bottom covering rectangles) without constructing an O(n?) planar graph. Without
going into further detail (due to space limitation), we state the main result of this paper:

Theorem 7: S-Star polygon, possibly containing holes, can be recognized in O(nlogn) time.
(Proof omitted)

5 Discussions

We presented an optimum O(n) time algorithm for computing the s-kernel of simple orthogonal
poly§ons We showed that the s-kernel of an orthogonal polygon with holes can be computed in
O(n?) time. Even though the s-kernel of a polygon with holes may have Q(n?) components we
showed that it is possible to recognize s-star polygons in O(nlogn) time. The algorithm can be
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generalized to include non-orthogonal polygons without increasing complexity: reflex vertices play
the role of dent lines and the algorithm generalizes naturally. It is not clear if the O(nlogn) time
algorithm to recognize s-star polygons with holes is optimal or not. It would be therefore interesting
to obtain a faster recognition algorithm or to prove that the complexity is optimal.
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(a): Type | Stair-Case Path (b): Type |l Stair-Case Path

(c): x-Monotone Visibility Polygon (d): y-Monotone Visibility POlygon
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Figure 1: lllustrating Stair-Case Path and s-Visibility Polygon



