189

Generating Random z-Monotone Polygons with Given Vertices

Chong Zhu! Gopalakrishnan Sundaram? Jack Snoeyink!* Joseph S. B. Mitchell?5

Abstract

There are many possible definitions for random geometric objects such as polygons. This paper
considers a definition that is motivated by the desire to generate random test instances for problems
in geographic information systems. Given a set S, of n points in the plane, no two with the same z-
coordinate, generate uniformly at random one of the possible z-monotone polygons with vertex set S,.
We give an algorithm that uses O(n) space and O(K) time, where n < K < n? is the number of edges
of the visibility graph of the z-monotone chain with vertex set S,. We also discuss generating nested
polygons and the difficulty of removing the word “monotone.”

1 Introduction

This paper details some results that we have obtained in our study of generating random polygons. In
particular, we describe an algorithm for generating z-monotone polygons uniformly at random. As well as
being of theoretical interest, the generation of random geometric objects has applications which include the
testing and verification of time complexity for computational geometry algorithms. In order to have some
control over the characteristics of the output, we would like to fix the vertex set and then generate uniformly
at random a simple polygon with the chosen vertices.

Others have considered generating random simple polygons by various processes
that move vertices (e.g. [6]). When the vertices are fixed, Epstein [1] gives an O(n*)
algorithm to generate triangulation of a given simple polygon at random. Meijer
and Rappaport [5] studied monotone traveling salesmen tours and show that the
number of z-monotone polygons on n vertices is between (2 + v/5)("=3)/2 and
(VB)(=2).

Let S, = {s1, 82, ..., $»} be a set of n points sorted according to their z coordi-
nate. We assume, in this paper, that no two points have the same z-coordinates.
We use a Real RAM model of computation. We generate a random monotone
polygon by scanning S, forward and counting all monotone polygons, then picking a random number and
scanning backward to generate the polygon of that number. (“Monotone” will always mean z-monotone in
this paper.) Thus, after some initial definitions, we count monotone polygons in section 1.1 and generate
one in section 1.2. Our algorithms depend on the size of visibility graph of the monotone chain joining the
vertices of Sy, so we show in section 2 how to generate the visibility edges forwards and backwards.

Let S; = {s1,82,...,8;} for 1 <i < n. Let N(i) denote the number of monotone polygons with vertex
set S;. Any monotone polygon constructed from S; can be divided into two monotone chains of which the
leftmost vertex is s; and rightmost vertex is s;. Points s; and s; are on both chains; any other point in S;
is on either the top or bottom chain.

Figure 1: Monotone
chains

1 Department of Computer Science, University of British Columbia, Vancouver, B.C., Canada

2Center for Mathematics Research, University of Montreal, Montreal, Quebec, Canada

3Department of Applied Math & Statistics, SUNY Stony Brook, NY, USA

4Supported in part by an NSERC Research Grant and a B.C. Advanced Systems Institute Fellowship.

5Supported in part by grants from Boeing Computer Services, Huges Research Laboratories, Air Force Office of Scientific
Research contract AFOSR-91-0328, and by NSF Grants ECSE-8857642 and CCR-9204585

190

For convenience, we frequently denote the line segment or polygon edge 3:5; by (4,j) and the line §3;
by £(z,7)

1.1 Counting Monotone Polygons

We begin by establishing a recurrence that counts the monotone polygons on S; in terms of those on S; for
Jj<i. ,

Note that a monotone polygon with vertex set S; has edge (¢ — 1,1) as one of the two edges incident to
s;. Let T(2) be the set of monotone polygons with vertex set S; that have edge (i — 1,%) on their top chain
and define the number of these polygons TN (i) = |T'(i)|. Similarly, let B(z) be the set of monotone polygons
with vertex set S; that have edge (i — 1,%) on their bottom chain and define BN (i) = |B(3)|. Our recurrence
will actually count TN(¢) in terms of BN(j) for j < 1.

Lemma 1.1 For any point set Sy with k > 2, the number of monotone polygons with vertices Sk is
N(k) =TN(k)+ BN(k) (1)

We say that a point s; is above-visible from si if ¢ < k and s; is above
the line £(j, k), for all points s; with ¢ < j < k. Similarly, s; is below-visible
from s, if ¢ < k and s; is below £(j, k), for i < j < k. Let V(i) be the set of
points that are above-visible from point s;, and let V(i) be the set of points
that are below-visible from point s;. We can now count monotone polygons
on Sy where both edges into s are specified.

Lemma 1.2 The number of polygons in T (k) that contain edge (j, k), for

j € Vg(k), is BN(j + 1). The number B(k) that contain edge (j,k), for

j€Vr(k), is TN(j +1). Figure 2: Vp(12) = {10} and
Proof: Let P(j, k) be the set of polygons in T'(k) with (7, k) as a bottom Vs(12) = {7,9}
edge, for j € Vg (k). For the polygons in P(j, k), we know that points s; and s, are on the bottom chains,
and sjy41,...,S% are on the top chains. So the path of s;, sk, sk—1,~ s;41 is fixed. We can treat this
path as an edge (7, + 1) that is on the bottom chain. Figure 3 shows an example. Thus, |P(j, k)| equals
the number of monotone polygons generated from S;.; with the edge (j,j7 + 1) on the bottom chains,
which is BN(j+1). »

Figure 3: The original polygon and its equivalent set in B(j + 1).

Theorem 1.3 For any point set Sy with k > 2, we have

TN(k)= Y BN(j+1) (2)
JEVB(k)
BN(k)= > TN(j+1) (3)

JEVr (k)

191

Proof: We prove formula 2. According to the definition of below-visible, the bottom edge (j, k) of any
P € T(k) uses a point s; € Vp(k). By lemma 1.2 there are BN(j + 1) monotone polygons having edges
(k —1,k) and (j, k). Therefore, we have 2 jevaky BN(j +1) polygons in total.

This theorem gives us a procedure to calculate TN and BN, assuming that we have Vg(k) and Vi (k).
We can start with TN (2) = BN(2) = 1, since in the degenerate case of two vertices the line segment can be
considered as the top and the bottom edge of a degenerate polygon. Then we use the recurrence to determine
TN(i) and BN (3) for i := 3 to n.

1.2 Generating Monotone Polygons Uniformly

Once we have TN(i) and BN(i), for all i < n, we can generate a monotone polygon on vertex set S,
uniformly at random. Again, we assume that we have Vg(k) and Vr(k), the below-visible and above-visible
vertices. The Generate() algorithm scans the point set S,, from the right to the left to generate monotone
polygons.

Generate(S,)
PICK z € [1, N(n)] uniformly at random;
ADD s, TO top-chain; Generate Top(k, z)
ADD s,, TO bottom_chain; 1. IF k €2 RETURN;
IF z <TN(n) 2. FIND SMALLEST : THAT SATISFIES:
ADD s,,—1; TO top_chain; z < E(jGVn(k))/\(jSi) BN(j +1);

Generate_Top(n, x); 3. ADD POINT s; TO bottom_chain;
ADD s; TO bottom_chain; 4, ADD si_3, Sk-3,---,8i+1 TO top-chain;
ELSE 5. k=1+1;
z =z —TN(n); 6. x=x_2(jeVD(k))/\(j<i)BN(j+1);
7.

ADD s$,-; TO bottom_chain;
Generate Bottom(n, z);
ADD s; TO top-chain;

END IF

Generate Bottom(k, z)

Generate_Top() and Generate Bottom() are two mutually recursive procedures. Generate_Top() deals
with the case in which sx_; and s; are on the top chain. Generate Bottom() can be obtained from
Generate_Top() by swapping all “top”s and “bottom”s.

Generate() determines a one-to-one correspondence between the integers in [1, N(n)] and the monotone
polygons {Py, P;, ..., Py(,)} that can be generated from S,,. Thus, it generates monotone polygons uniformly
at random.

Theorem 1.4 For n > 2 and Yz € [1,TN(n)], Generate_Top() generates a unique monotone polygon

Pz € T(n); For n > 2 and ¥z’ € [1,BN(n)], Generate Bottom() generates a unique monotone polygon
P,. € B(n).

2 Computing Visibility

The algorithms of the previous section assumed that the above-visible and below-visible sets, V(i) and V(i)
for i = 1,...,n, were available. A closer look, however, shows that these sets are only needed for one
index ¢ at a time: the algorithm to obtain TN and BN needs the sets in increasing order and algorithms
Generate_Top() and Generate Bot() need them in decreasing order.

We can obtain Vr(i) incrementally using the following idea. Let Si denote the monotone chain with
vertices s1, S2, ..., k. If we think of Sy as a fence and compute the shortest paths in the plane above S;

192

from s; to each s; with ¢ < k, then we obtain a tree that is known as the shortest path tree rooted at si [3, 4].
The above-visible set V(i) is exactly the set of children of s in the shortest path tree rooted at s;. Thus,
we will incrementally compute shortest path trees rooted at s, s2, ..., sk to get the above-visible sets.

We represent shortest path trees (in which a node may have many children) by binary trees in which
each node has pointers to its uppermost child and next sibling. Section 2.1 gives the details for computing
these trees in the forward direction: computing V(i) from Vr(i — 1). Section 2.2 gives the details for the
reverse direction: computing Vr(z) from V(i + 1).

2.1 Computing Visibility Forward

We store top_tree(i) and bot_tree(i) using child and sibling pointers. For each vertex j € [1,n], we have a
record for top_tree

j: | ptr | ptr stores the coordinates of vertex j

upc | upc is a pointer pointing the upper child of j in top_tree(k)

sib | sib is a pointer pointing the sibling of j in top_tree(k)

The initial value of top_tree is 1.ptr = s;, L.upc = nil and 1.sib = nil. We assume that top_tree(i — 1) has
been computed and call the procedure Make_top(i — 1,4, tmp) to calculate the top_tree(i)—i.upc will be set
to tmp.sib.

Make_top(j, k, Var:lastsib)
WHILE j.upc # nil and k is above £(j.upc, j)
Make_top(j.upc, k, Var :lastsib);
/* make subtree for this child of j, which can be seen by k. */
J.upe = j.upe.sib; /* consider next child of j */

END WHILE
lastsib.sib = j; /* make the connection to j, one of the children of k£ */
lastsib = j;

To compute the bot_tree is similar to computing the
top-tree. Knowing top-tree(k) and bot_tree(k), we know
the above-visible and below-visible point sets, Vr(k) and
VB(k) of vertex k. Now we give the theorem to show us
how to get Vr(k) from top-tree(k).

Let 7 be a record in the top_tree. We define that r.sib*
= r.sib*1.sib, for any integer i > 0, and 7.sib° = r. Then
we know that the upper child of k¥ and its siblings are this
kind of format. Now we claim that the upper child of k Figure 4: Point set S5 and top-tree(5)
and its siblings are the vertices visible from k, and any vertex that is visible from k is either the upper child
of k or its sibling. This is proved in the next theorem.

Theorem 2.1 Let CT(k) be the set of points {j | J = k:upe.(sib)* for some i}. (The children of k in the
shortest path tree.) We have Vr(k) = CT(k) — {k — 1}.

2.2 Computing Visibility backward

In procedure Generate_Top() and Generate Bottom(), we need to find the smallest i in line 2. Here we
assume that top_tree(k + 1) and bot_tree(k + 1) have been completed, we use procedures Back_top and
Back_bot to generate top-tree(k) and bot_tree(k).

193

Let t;—; = (k+1).upc.sib?, for j = 0,1,...,i. Then t; = (k+
1).upc and to = k. Let Q@ = {t;,7 =0,...,:}. From theorem 2.1,
we know Q = Vr(k + 1) — {k}. If we take ty as the origin of
coordinates, according to the above-visible definition, the points
in @ are sorted lexicographically by polar angle and distance from
to. Then from a Graham-Scan [2] convex hull computation we can
get the correct top_tree(k). One example to calculate top_tree(k)
from top-tree(k + 1) is shown in Figure 5. The details are not Figure 5: top_tree(k) is generated from
hard, but are omitted due to space constraints [7]. top-tree(k + 1).

3 Time and Space Complexity Analysis

Now we have all the procedures to build up our algorithm. Next we give its time and space complexity,
beginning with Make_top() and Back_top().
Lemma 3.1 The runtime of Make_top(k — 1,k,Var:t) or of Back-top(k — 1, k) is O(|Vir(k)|).
Proof: Each call to Make.top(), except the first, implies that the calling procedure found a child of k.
All other work in the procedure takes constant time per call.
In Back-top(k — 1, k), which computes top_tree(k — 1) from top_tree(k), m

Theorem 3.2 Our algorithm has time complezity of O(K) and space in O(n). where K is the total number
of above-visible and below-visible points.

4 Generating nested monotone polygons

We can modify our algorithm to generate, on a given vertex set S,, a random z-monotone polygon that is
nested inside another z-monotone polygon P. All we need to change is the definition and computation of
visibility.

We say that s; is below-visible from s if ¢ < k, the line segment (i, k) does not intersect the exterior of
P, and s; is below £(j, k), for i < j < k. Similarly, s; is above-visible from s if i < k, the line segment (i, k)
does not intersect the exterior of P, and s; is above £(j, k), for i < j < k.

The visible sets V7 (k) and V(k) under this new definition of visibility can be computed both forward and
backwards in time proportional to their size with a time and space overhead of O(n + |P|). The additional
computation is essentially to compute the relative convez hull of P [3, 8] and Si up to the vertical line
through the point sy.

Theorem 4.1 One can count the monotone polygons having vertez set S, that are nested inside a monotone
polygon P in O(n + |P|) space and O(n + |P| + K) time, where K is the total number of above-visible and
below-visible points.

5 Conclusion

In this paper we have used a definition of random polygons that separates the choice of vertex set from
the choice of edges. We have shown how to efficiently generate, uniformly at random, z-monotone polygons
that have a glven n-point set S, as their vertices. Our algorithm runs in O(n) space and O(K) time, where
n < K < n? is the number of edges of the visiblity graph of the monotone chain on Sn. This algorithm
allows us to generate nested z-monotone polygons for testing GIS algorithms.

We would like to be able to generate simple polygons with vertex set S, uniformly at random as well.
This appears difficult to do efficiently. One can, of course, generate permutations at random and check for
simplicity. The worst-case for this approach occurs when the points are in convex position—only 2n of the n!

194

permutations correspond the the convex hull,
which is the only simple polygon. There is, to
our knowledge, no efficient enumeration proce-
dure for simple polygons.

One approach that leads to a polynomial
time algorithm is to generate a random per-
mutation and then apply 2-opt moves to pairs
of intersecting edges—removing two intersect-
ing edges and replacing them with two non-
intersecting edges so as to keep the polygon
connected. It is a Putnam problem to observe
that this replacement decreases total length and
therefore converges to a simple polygon. van
Leeuwen and Schoone [9] showed that at most
O(n3) of these “untangling 2-opt” moves can be
applied in any order; their proof is particulary
nice if one considers the geometric dual. Unfor-
tunately, as figure 6 illustrates, this approach

==

/ ; ; N/ ;
73 / V/ y
Figure 6: Polygons obtained by “untangling 2-opt” for

the given six vertices. Numbers represent multiplicity due
to symmetries of the point set.

does not give simple polygons uniformly at random.

Acknowledgement

Figure 6 was developed with Sandor Fekete—we thank him for discussions on generating random simple

polygons.

References

[1] P. Epstein and J. Sack. Generating triangulation at random. In Proceedings of the Fourth Canadian Conference
on Computational Geometry, pages 305-310, 1992.

[2] R. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Information Processing

Letters, 1:132-133, 1972.

3] L. Guiba.s, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan. Linear time a.lgorit.hms for visibility and shortest
y
pa.th problems inside triangulated simple pOlngIlS. Algorithmica, 2209—233, 1987.

[4] Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple polygon. Journal of
Computer and System Sciences, 39(2):126-152, October 1989.

[5] Henk Meijer and David Rappaport. Upper and lower bounds for the number of monotone crossing free hamiltonian
cycles from a set of points. ARS Combinatoria, 30:203-208, 1990.

[6] Joseph O’Rourke and Mandira Virmani. Generating random polygons. Technical Report 011, Smith College,

1991.

(7l
(8]
(9]

Jack Snoeyink and Chong Zhu. Generating random monotone polygons. Technical Report 93-28, Department of
Computer Science, University of British Columbia, September 1993.

Godfried T. Toussaint. Computing geodesic properties inside a simple polygon. Revue D’Intelligence Artificielle,
3(2):9-42, 1989. Also available as technical report SOCS 88.20, School of Computer Science, McGill University.

J. van Leeuwen and Anneke A. Schoone. Untangling a travelling salesman tour in the plane. In J. R. Miihlbacher,
editor, Proc. 7th Conf. Graphtheoretic Concepts in Comput. Sci. (WG 81) (Linz 1981), pages 87-98, Miinchen,
1982. Hanser.

