The Delaunay triangulation maximizes the mean inradius

Timothy Lambert*

Abstract

I prove that amongst all triangulations of a planar point set the Delaunay
triangulation maximizes the arithmetic mean of the inradii of the triangles.

1 Introduction

A triangulation of a set of points is a partition of the convex hull into triangles. The
Delaunay triangulation is a well known triangulation, being the planar dual of the
famous Vorono: diagram.

Most applications of triangulations require that the triangulation should avoid
‘skinny’ triangles. Many different measures of the skinniness of a triangle have been
proposed. One of these is the inradius (radius of the inscribed circle) [14, 19].

In this paper I prove that the Delaunay triangulation is the triangulation that
maximizes the arithmetic mean of the inradius.

1.1 Background

Triangulating sets of points is a very important problem in computational geometry;
there are far too many applications in computational geometry and other fields to

mention here. (See the surveys [4, 6, 1])
There are many different possible triangulations of a set of sites. Which one is

optimal will depend on the application. For example:

o If the triangulation is to be used as finite element mesh we wish to avoid ill-
conditioned equations. This means that we do not want triangles with angles
close to 180° [2].

o If we are using the triangulation to linearly interpolate functions with a bounded
second derivative, then the error is minimized by minimizing the maximum cir-
cumradius of any triangle [15].

o If the triangulation represents a three-dimensional surface which is to be ren-
dered on a raster display, then we want to avoid triangles less than one pixel
wide as these can cause undesirable artifacts [8].
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Many other alternative definitions of optimality have been proposed. See [4, 13]

for surveys.
Amongst all triangulations, The Delaunay triangulation optimizes many trian-
gulation measures. These include

e maximizing the minimum angle [20],

e minimizing the maximum circumscribed circle [5],

e minimizing the maximum smallest enclosing circle! [5, 17],
e minimizing the integral of the gradient squared [18, 16],

Little [14] and Schumaker [19] have proposed that the triangles in a good tri-
angulation should have large inradii. I will prove that the Delaunay triangulation
maximizes the sum of the inradii (and hence the arithmetic mean).

2 Preliminaries

[ use R(ABC) to denote the circumradius of the triangle ABC, r(ABC) the in-
radius, A(ABC) the area, and P(ABC') the perimeter. Note that r(ABC) =
2A(ABC)/P(ABC) (see figure 1).

A(ABC) A(TAB)+ A(IBC)+ A(ICA)
(re+ ra +1b)/2

rP(ABC)/2.

Figure 1: 7(ABC) = 2A(ABC)/P(ABC)

A triangulation is locally Delaunay if for every pair of adjacent triangles ABC, AC D
in the triangulation, the Delaunay triangulation of ABCD includes the triangles

!The smallest enclosing circle differs from the circumscribing circle when the triangle is obtuse.
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ABC and ACD. The key to the proofs that the Delaunay triangulation optimizes
the measures listed above is the following fact: A triangulation is Delaunay iff it is
locally Delaunay [9].

It follows from this fact that it is only necessary to prove that the Delaunay
triangulation optimizes a measure for sets of four points, since if the triangulation
that optimizes that measure is not Delaunay, then that triangulation is not locally
Delaunay. Therefore there must be an adjacent pair of triangles ABC, ACD in the
triangulation such that the Delaunay triangulation of ABCD is ABD, BCD. If the
Delaunay triangulation optimizes that measure for sets of four points, then we can
find a triangulation with a better measure by replacing the triangles ABC, ACD
with ABD and BC D, which is a contradiction.

3 Main result

Theorem 1. The Delaunay triangulation maximizes the sum of the inradii.

Proor. It is sufficient to prove that if ABCD is a convex quadrilateral with De-
launay triangulation ABC, ACD then r(ABC) + r(ACD) > r(ABD) + r(BCD).

Let P be the point where the diagonals of ABC D intersect. Let 14 = r(DAB),
rap =1(PAB),rpa = r(PDA) and h4 be the length of the altitude at A in triangle
DAB (see figure 2).

Figure 2: Inscribed Circles

Demir (7] has proved the following relation between these quantities:
TDAT
TDA+TAB — T4 =2-P;:—A—B-- (1)
A
Applying this relation to triangles ABC, BCD, and C DA yields:

2"'AB"'BC’ (2)

TAB+TBC —TB = hp
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TBCTC

rBc+ToD —TC = 2——?;—0—2, 3)
T T

TecD+Tpa—Tp = 2-—02—;4-. (4)

Adding 1 and 3 and subtracting 2 and 4 we get:

TDATAB _ TABTBC , TBCTCD _ Tcm‘m) (5)

—ra—To =2
TB+TD T4 =TC ( hia B he hD

Now let D’ be the point where BD intersects the circumcircle of ABC, and
define r'DA, r'C D and I, appropriately.
PD’'A is similar to PC B; so

TDA 2A(PDA)

hp hp(|PD| +|DA| +|AP|)
|AP|

(IPD| +|DA| + |AP|)
|AP|

(I1PD'| +|D'Al + |AP])

Tha

My -

Using these results in equation 5 we get

T T r 7
rB+Tp—T4A—TC > 2 (rAB(-ED:-‘- - -—B)-:-')+ rcD('ff‘ = %)) = 0.
D

That is, 7(ABC) + r(ACD) > r(ABD) + r(BCD). a

Remark

As an immediate consequence of thereom 1 we have:

Theorem 2. r(ABC) + r(CDA) = r(DAB) + r(BCD) if and only if ABCD is
cyclic.

The first known statement of the “if” part of this theorem was on a tablet hung in
a Japanese temple in 1800 [10]. It is the most celebrated Japanese temple geometry

theorem, mentioned or proved in [21, 11, 10, 12]. None of these proofs can be easily
modified to prove the converse; so the “only if” part is a new result in elementary

geometry.



Remark

This result does not generalize to three dimensions as the following counterexample
shows.

The points 4 = (0,0,0), B = (1,0,0),C = (0,1,0), D =(0,0,1), £ = (1,1,1)
lie on a common sphere. The convex polyhedron ABC DE can be divided into tetra-
hedra in two ways: the two tetrahedra ABC'D and BCDE, or the three tetrahedra
AEBC, AECD, and AEDB.

tetrahedron | volume | area inradius

ABCD 1/6 (3+v3)/2 3 —=V3

BCDE 1/3 2V3 ivi

AEBC 1/6 (1+2v2+3)/2 | 1/(1+2v2 +V3)
AECD 1/6 (1+2v2+/3)/2 | 1/(1+2v2 + V/3)
AEDB 1/6 (1+2v2+v3)/2 | 1/(1+2v2 +V3)

Clearly rf(ABCD)+ r(BCDE) # r(AEBC)+ r(AECD)+ r(AEDB).

Remark

The result leads to an alternative implementation of the InCircle geometric prim-
itive, required for the construction of the Delaunay triangulations. Unfortunately,
because six sqaure root operations are required to calculate the four inradii, this
alternative implementation is slower than the usual determinant based one.
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