OPTICAL COMPUTER VISION

(Some geometrical algorithms)

Y. B. KARASIK
School of Mathematical Sciences
Tel Aviv University
Tel Aviv, Israel

Abstract

‘We address one of the basic problems of computer
vision — extracting vertices from a polygonal im-
age. A constant time optical algorithm to solve
the problem is proposed.

1 Introduction

Computer Vision aims to simulate the human
visual system and as such deals with problems
ranging from image acquisition and “interest-
ing points” extraction to pattern recognition and
scene analysis. The standard “interesting points”
are corners or vertices of polygons. Therefore,
there exist numerous algorithms for corner de-
tection/ vertex extraction intended for standard
electronic computers [KR], [FH], [RSB], etc.

However, even if an eye can be likened to a
computer, it should be likened to an optical com-
puter because an eye is an optical system includ-
ing pupil, crystalline lense, photodetectors (in
the form of rods and cones of a retina), etc. In
addition, an eye performs some transformations
inherent to optical computers [Sa]: the Fourier
transform of an input image [G], log-polar change
of coordinates [S] which turns out to be the cor-
ner stone of many optical algorithms (see e.g.
[K91, KS92]), etc.

Therefore, it would be prudent to initiate de-
veloping algorithms of computer vision for opti-
cal computers. The first step in this direction
could be optical algorithms for extracting edges
and vertices from an image. In fact, we only need
the latter algorithm because extracting edges (i.e.
the boundary of an image) can be performed ei-

ther by spatial differentiation of an image or by
convolving an image with an edge detecting oper-
ator (i.e. Sobel operator). And both these oper-
ations — differentiation and convolution, are ele-
mentary operations in the optical computational
model (see e.g. [KS92]).

Recall that this model includes as primitives
the following operations:

(i) Minkowski sum and difference of two plane
figures [K91];

(ii) Union, intersection and subtraction of plane
figures [K91];

(iii) The standard duality transform that maps
apoint (a,b) toaliney = —a-z+b and aline
y = c¢-z+d to a point (c,d) [K92, KS92]. It
is well known that this duality preserves in-
cidence between points and lines, and maps
a point lying above (resp. below) a line [to
a line lying above (resp. below) a dual point
of l.

(iv) Hough duality transform that maps a point
(p,0) to a straight line x-cosf+y-sin f = p,
and a straight line segment

z-cos0+y-sind=p, 0€lb,0,]

to a point (p,) whose intensity is propor-
tional to the length of a segment [ED];

(v) Semi-conformal changes of coordinate [B]:

{ u=u(z,y);

v =1(z,y),

satisfying the condition

207

208

(vi) Intensity inversion of an image: g(z,y) =
Imaz - f(xnu)s where f(z» y) and g(zv y)
are intensity distributions of an image be-
fore and after inversion respectively, and
Imaz > f(z,y) for all z,y [OHG];

(vii) Thresholding of an image at a given level of
intensity (as well as extracting regions of its
maximum/minimum intensity) [GCHHZY].
Remark: In what follows we use two
types of thresholding: Threshold<a(S)
which denotes that portion of an image S
whose intensity is not greater than a, and
Threshold,(S) which denotes that slice of
S whose intensity is a exactly. Obviously,

" Threshold,(S) = Threshold<a[Imaz—

Thresholdy,,,. —a(Imaz—Threshold<4(S))].

Based on these operations as primitives, in the
rest of the paper we propose a constant time opti-
cal algorithm to extract vertices from the bound-
ary of a polygon.

2 How to extract vertices
optically from the bound-
ary of a polygon

Let the boundary §A of a polygonal image A be
given. We assume that this boundary consists
of rectilinear segments {S;}/V, called edges. To
extract vertices of the polygon from the boundary
we can proceed as follows:

Step 1. Dualize the edges {S;}}L, into
points and then dualize these points
back into the union of straight lines
L = Uf;l l; supporting these edges
(see Fig. 1).

Step 2. Extract the intersection points
Q = {Q:}M, of the lines by threshold-
ing the image obtained at level 2. Ob-
viously, @ contains all vertices of A and
intersection points of its boundary with
lines in L and between pairs of lines in
L. These two kinds of points can be
considered as redundant vertices. To
get rid of them we can proceed as fol-
lows:

Step 3. Compute P = A N Q. Obvi-
ously, P contains all vertices of A and

intersection points of its boundary with
lines in L.

Step 4. Choose an € > 0 such that the
disc of radius € centered at any point
p € P does not contain other points
of P and does not intersect edges of
the polygon except for the edge(s) that
contain p (the details of performing
this step are described below).

Step 5. Compute the following seg-
ments of boundary edges:

S=0AN(P+0,),

where O, is the disc of radius € cen-
tered at the origin of the coordinates
(see Fig. 2).

It is easily seen that each segment s €
S has length ¢ or 2¢, depending on
whether or not one of its endpoints is
a vertex of A.

Step 6. Construct all radial segments
R of O, which are parallel to the edges
of the polygon using the algorithm de-
scribed in [KS93].

Step 7. Compute
Threshold (S + R).

It is easily seen that the image obtained
consists of segments lying completely
in the boundary of the polygon unless
they pass through its vertices (see Fig
3). Hence,

Threshold,(S+ R) \ 0A

is a set of exterior open segments, each
of which has a vertex of A as an end-
point and lies on an extension of an
incident edges. We refer to these seg-
ments as “pointers” at the vertices, and
construct them by:

Step 8.
pointers_at_vertices =
Threshold(S+ R) \ O0A,
(see Fig. 4).

Step 9. Elongate the pointers by com-
puting

lengthened_pointers =

Threshold, (pointers_at_vertices+R),

(see Fig. 5).

Obviously, due to this choice of e,
lengthened_pointers contain all ver-
tices of A and do not contain redun-
dant vertices. Hence, we can complete
the algorithm as follows:

Step 10. Compute

Vertices = P N lengthened_pointers.

Computing the required ¢ at Step 4 can be
performed as follows:

Step 1. Rotate the set L of lines ob-
tained in Step 1 of the previous algo-
rithm by the angle Z. This can be done
using the following semi-conformal co-
ordinate transformation:

{v=?
v=—z.
As a result we obtain a set L, of lines,

each of which is perpendicular to a cor-
responding line of L.

Step 2. Hough-dualize the lines of
L, into points (pi,0;), then trans-
form these points into the correspond-
ing points (0,6;), and finally Hough-
dualize the new points back to set Ly of
lines which pass through the origin of
the coordinates. Obviously, each line
of L is perpendicular to at least one
line of Ly and vice versa.

Step 3. Compute the Minkowski sum
Lo+ P. As a result we obtain the set of
supporting lines of all the perpendicu-
lars from the points of P to the edges
{Si}L, of the polygon.

Step 4. Compute the set @ of all the
intersection points between the edges
of A and the perpendiculars to these
edges from the points of P, constructed
at the previous step.

Step 5. Compute a lower bound 2¢ on
the minimum distance between any
pair of the points in P U Q. Obviously,
such e satisfies the requirements of Step
4 of the previous algorithm.

Hence, we obtain

209

Theorem 2.1 The vertices of a polygonal im-
age can be extracted optically in constant time
by a single optical processor which works in the
monochromatic mode of optical computation.

3 Conclusion

What is the importance of the result obtained?

The point is that till now all evidence that an
eye (and probably the brain as a whole) is an
optical computer was mostly neuro-physiological
[P] and not behaviorial. For example, nobody
tried to explain why human visual perception
solves geometrical problems, ranging from ex-
tracting feature points of images to motion plan-
ning amidst obstacles so efficiently with a speed
which does not seem to depend on the complexity
of the images viewed, whereas the running time of
the most efficient algorithms for electronic com-
puters to solve these problems is some polynomial
of the input size.

Our result explains this phenomenon and,
hence, can be viewed as new and important ev-
idence in favour of the conjecture that an eye is
an optical computer.

References

[B] O. Bryngdahl, Optical map transforma-
tions, Optics Communication, 10(2), 164-
168 (1974).

[ED] G.Eichman and B. Z. Dong, Coherent opti-
cal production of the Hough Transform, Ap-
plied Optics 22(6), 830-834 (1983).

[FH] J. Q. Fang, T. S. Huang, A corner finding
algorithm for image analysis and registra-
tion, Proceedings of AAAI Conference, pp.
46-49, 1982.

[G] N. Graham, The visual system does a crude
Fourier analysis of patterns, SIAM-AMS
Proceedings, vol. 13, pp. 1-16, 1981.

[GCHHZY] C. Gu, S. Campbell, J. Hong, Q.
He, D. Zhang, P. Yeh, Optical thresholding
and maximum operations, Applied Optics,
31(26), pp. 5661-5665, 1992.

[K91] Y. B. Karasik, Optical algorithms of
computational geometry, Technical report

210

199/91, The Eskenasy Institute of Com-

puter Science, Tel Aviv University (1991).

[K92] Y. B. Karasik, The optical algorithm for
the inverse Hough transform, Journal of Op-
tical Computing and Processing, 2(2), 127-
136 (1992).

[KS92] Y. B. Karasik, M. Sharir, Optical Com-
putational Geometry, Proc. 8th ACM Sym-
posium on Computational Geometry, ACM
Press, pp. 232-241, 1992.

[KS93] Y. B. Karasik, M. Sharir, The power
of geometric duality and Minkowski sums
in optical computational geometry, Proceed-
ings 9th ACM Symposium on Computa-
tional Geometry, ACM Press, pp. 379 — 388,
1993.

[KR] L. Kitchen, A. Rosenfeld, Gray level cor-
ner detection, Pattern Recognition Letters,
1, pp. 95-102, 1982.

[OHG] E. Ochoa, L. Hesselink, J. Goodman,
Real-time intensity inversion using two-wave
and four-wave mixing in photorefractive
Bi135i04, Applied Optics, 24(12), 1826 -
1832 (1985).

[P] K. H. Pribram, Languages of the brain
(Prentice-Hall inc., Englewood cliffs, New
Jersey, 1971).

[RSB] K. Rangarajan, M. Shah, D. V. Brackle,
Optimal corner detector, Proceedings of the
2nd International Conference on Computer
Vision, pp. 90-94, 1988.

[Sa] B.E. A. Saleh, Optical information process-
ing and the human visual system, in Appli-
cations of Optical Fourier Transforms, ed.
H. Stark, pp. 431-463, 1982.

[S] H. Szu, Holographic coordinate transforma-
tions and optical computing, in Optical and
Hybrid Computing, Proceedings SPIE, vol.
634, pp. 480-484, 1986.

Figure 1: A polygon, extensions of its edges
and the intersection points of these exten-
sions

~
| A :

. .
. .
. . *. .
. . . .
. . s .

.
. .
. * .
. . \ I
.
.
.
‘/'

Figure 2: Real and spurious vertices of the
polygon, and the segments § = dAN(P+0.)

A
X
A

Figure 3: The image Threshold.(S + R)

v 1.

A

Figure 5: Vertices and lengthened pointers

Figure 4: Vertices and pointers at them at them

