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Abstract

The problem of constructing optically the
k—level of an arrangement of lines in the plane
optically in constant time is considered and
solved. Other related problems such as con-
structing a weak separator of two point sets in
the plane, constructing a centerpoint of a point
set in the plane, etc. are also addressed and
constant time optical algorithms are proposed to
solve them.

1 Introduction

In spite of the enormous achievements in the de-
velopment of electronic computers over the past
three decades, there has always been an interest
in optical computers as a potential alternative
computing technology for two main reasons:

o the practical speed of an electronic signal on a
silicon chip is roughly one-fifth the speed of light
(in wires it slows down even more)[J];

o optics provides free space interconnection be-
cause light rays, unlike wires, can penetrate each
other.

These advantages of optical computers both in
the physical speed of computation and massive
parallelism of interconnections as compared with
electronic computers have been the main driving
force in efforts to create such a computer.

However, on the one hand, there exists an-
other measure of speed of computation — the
time-complexity of algorithms — and the advan-
tage of optical computers from the standpoint of

this measure is much less obvious or not obvious
at all and, hence, requires thorough investigation.
On the other hand, massive parallelism of optics
appears to be too rich for free space interconnec-
tion to be its only manifestation. Therefore, it
is prudent to search for other manifestations of
massive parallelism of optics which whould give
rise to reduction in the time-complexity of algo-
rithms.

Attempts at doing so have already yielded
their first results and have given rise to the de-
velopment of the first constant time optical al-
gorithms for various problems of computational
geometry [K91, K92, KS92, KS93).

This paper continues the investigation into op-
tical computational geometry and proposes con-
stant time optical algorithms for the following
problems:

o Constructing the K-level of an arrangement of
lines in the plane;

o Constructing a weak separator of two point sets
in the plane;

o Constructing a bisector of a finite set of points
and ham-sandwich cuts in two dimensions;

o Constructing the centerpoint of a point set in
the plane;

o Constructing a separator line for a set of seg-
ments in the plane.

As in the previous papers on optical compu-
tational geometry, we assume here that the fol-
lowing operations can be performed optically in
constant time:

(i) Minkowski sum and difference of two plane
figures [K91];



(ii) Union, intersection and subtraction of plane
figures [K91];

(iii) The standard duality transform that maps
a point (a,b) to aline y = —a-z+b and aline
y = c-z+d to a point (¢, d) [K92, KS92]. It
is well known that this duality preserves in-
cidence between points and lines, and maps
a point lying above (resp. below) a line ! to
a line lying above (resp. below) a dual point
of l.

~ (iv) Hough duality transform that maps a point

(p, 9) to a straight line z-cos§+y-sin 6 = p,
and a straight line segment

z-cosf+y-sind=p, 0E€][6,0,]

to a point (p,d) whose intensity is propor-
tional to the length of a segment [ED];

(v) Semi-conformal changes of coordinate [B]:

{ u=u(z,y);

v= v(z’ y))
satisfying the condition

ou_ v
0y ~ Oz’

(vi) Intensity inversion of an image: g(z,y) =
Imaz — f(z,y), where f(xry) and g(z,y)
are intensity distributions of an image be-
fore and after inversion respectively, and
Imaz > f(z,y) for all z,y [OHG];

(vii) Thresholding of an image at a given level of
intensity (as well as extracting regions of its
maximum/minimum intensity) [GCHHZY].
Remark: In what follows we use two
types of thresholding: Threshold<a(S)
which denotes that portion of an image S
whose intensity is not greater than a, and
Threshold,(S) which denotes that slice of
S whose intensity is a exactly. Obviously,

Threshold,(S) = Thresholdg[Inaz—

Thresholdgy,,,, —a(Imaz—Threshold<,(S))].

2 Constructing the k-level
of an Arrangement of
Lines in the Plane

Let A(L) be an arrangement of a set L of N lines
in the plane. Recall, that the lower/upper level of
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the point p in the plane is defined as the number
of lines in A(L) which lie below/above p, not in-
cluding the line(s) passing through p itself. Anal-
ogously, the lower k-level of A(L),for1 < k < N,
is defined as the set of points p with

a(p) <k—1and b(p) < N -k,

where a(p), b(p) are the number of lines [ in L
such that p is in the (open) halfplane I*, and -,
respectively.

The upper k-level of an arrangement of lines is
defined analogously, as the set of points p with

b(p) <k—-1land a(p) < N —k.

Our approach to constructing the k-level of an
arrangement of lines optically is based on the fol-
lowing definition and lemma:

N
Definition 2.1 Let U A; be the union of N pla-

i=1
nar sets. We define the intensily of the union at
point p as the number of sets A; containing p :

N
intensity(p, U A;) = #{ilp € Ai}.

i=1
(We note that, when computing union of sets op-
tically, by adding up their intensity distributions
which are equal to their characteristic functions,
the intensily as just defined corresponds to actual
optical intensity.)

Lemma 2.2 The upper k-level of an arrange-

ment of a set L = {L;}}L, of N lines coincides
N

with the upper envelope of that portion ofU(I;.*')"
i=1

which has intensity k, except at the intersection

points of the lines. Analogously, the lower k-level

of the arrangement concides with the lower en-
N

velope of that portion of U(I,-' )¢ which has in-
. =1

tensity k, except at the intersection points of the

lines.

N
Proof. Indeed, let intensity(p, | J(iF)?) = *.

i=1

Thus,

N
intensity(p, U(I;")c) =t{ilpe (i})} =

i=1
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=Hilpelyvrek}=t{ilpe [ }+Hilp €} =
b(p) +#{ilp € L} = k.

Hence
b(p) = k —#{ilp € i}

However, p lies on at least one line !; because
p belongs to the above upper envelope. Hence
Hilpe i} >1and b(p) < k—1.

On the other hand,

a(p) = Hilpe lf} = N = Hilpe ()} =

N
N — intensity(p, U(I;")c) =N-—k.
i=1
Since we proved that both b(p) < k—1and a(p) =
N — k, p belongs to the upper k-level of A(L).

Let us now prove that if, conversely, p be-
longs to the upper k-level of A(L) and is

not an intersection point of the lines, then
N

intensity(p, U(If)"') =k.

i=1
Indeed, since p is not an intersection point,
then a(p) + b(p) = N — 1 and, hence, b(p) =
k-1, a(p)= N — k. Thus,

N
intensity(p, | J(IF)°) =

i=1
b(p) + H{ilp € i} = b(p) + 1 = k.

Similarly, we can see that no point vertically
above p can have intensity k, thus p lies on the
desired upper envelope.

The proof for the lower k-level is analogous.

(m]

Based on this lemma, we can propose the fol-
lowing algorithm for constructing the upper k-
level of an arrangements of lines L = {4}, in
the plane: :

Step 1. Compute

» N
L + ray.down = U(I?')c,

f=1

where ray.down is the binary image
storing the negative half of the y—axis.

Step 2. Compute

N
Belt, = Threshold (| J(i})°)

i=1

and construct, thereby, all points in the
plane which have the upper k-level ex-
cept at intersection points of the lines
L={L},.

Step 3. Construct that portion of Belt;
which is visible from the point at y =
00. As a result, we obtain the desired
upper k-level except at those points
which are intersection points of the
lines constituting the arrangement.

To augment the image obtained by the
finite number -of missing points and
complete thereby the construction of
the upper k-level of an arrangement,
we can proceed as follows:

Step 4. Compute a lower bound 2¢ on
the minimum distance between any
pair of the intersection points of the
lines. (We can do this with the help of
the algorithm described in [KS93].)

Step 5. Construct all possible segments
Se of length ¢ emanating from the
origin, which are parallel to the seg-
ments of the upper k-level of the ar-
rangement, as just constructed (the de-
tails of performing this are described in
[KS93)).

Step 6. Construct the Minkowski sum
of S, with the portion of the upper k-
level already constructed, and extract
that portion of the sum which has in-
finite intensity.

It is easily seen that the image obtained
contains those and only those intersec-
tion points of the lines of L which be-
long to the upper k-level. Hence, we
can proceed as follows: '

Step 7. Construct the intersection of
the image obtained at step 6 with the
entire set of intersection points of the
lines of L. As a result, we obtain the
missing points of the desired upper k-
level.

Step 8. Complete the construction by
taking the union of those portions of it
obtained at steps 3 and 7 respectively.



Hence, we obtain

Theorem 2.3 The k-level (both lower and up-
per) of an arrangement of lines in the plane, as
well as a region between the k-level and (k + 1)-
level, can be constructed optically in constant
time using a single optical processor which works
in the monochromatic mode.

3 Weak separation of two
point sets in the plane

In this section we propose an optical solution for
the following problem posed in [ERK].

Let B = {b;}L, and R = {r;}}, be sets of
blue and red points in the plane respectively. A
line ! is called a strong separator of B and R if
all points of B lie in one closed half-plane defined
by [, and all points of R lie in the other closed
half-plane defined by [. Since, a strong separator
need not exist, the notion of a weak separator
has been introduced in [ERK]. A line ! is a weak
separator if the minimum of |B\ I*| + |R\ I~|
and |B\[~|+ |R\ I*| is minimized.

To describe the idea behind constructing a
weak separator optically, we should note the fol-
lowing.

Let D(B) be dual lines of the point set B and
let D(1) be the dual point of a line I. Obviously,
I* contains k; points of B iff D(I) belongs to the
locus of points lying either on the upper ky—level
of the arrangement A(D(B)) or between the up-
per ky— and (ks + 1)—levels of the arrangement.

Obviously, this locus has intensity k; in the
image D(B) + ray_down.

Analogously, half-plane I~ contains k, points
of Riff D(I) has intensity k, in the image D(R)+
ray-up.

Since, intensities of two images are added when
they are superimposed (united), |B \ I*| + |R\
I=| = k iff D(I) has intensity k in the image

[D(B) + ray-down] U [D(R) + ray-up].

Hence, the locus of points of minimum inten-
sity in this image is the locus of dual points of all
possible weak separators between B and R.

Thus, we can propose the following algorithm
for constructing a weak separator optically:

Step 1. Dualize the point sets B and R
to lines D(B) and D(R) respectively.
Step 2. Construct images D(B) +
ray-down and D(R) + ray-up on sep-
arate SLMs.

Step 3. Unite the images obtained and,
thus, construct the image [D(B) +
ray_-down] U [D(R) + ray_up).

Step 4. Extract that portion of this im-
age which has minimum intensity. As
a result we obtain the dual points of all
possible weak separators.

To construct the weak separator itself, we
choose a point from an image obtained at step
4 and dualize it to the desired separator. This
procedure of choosing optically a point from a
given point set deserves the special consideration
given in the following subsection.

3.1 How one chooses optically a
point from a point set in con-
stant time

In the problems we consider in this paper there
are no restrictions on the point chosen. We are
allowed to choose any point from a given set.
Therefore, in what follows we will always choose
the lowest point of all the leftmost points of a
given point set P merely because this point can
readily be extracted optically in constant time as
follows:

Step 1. If P is empty, which can be
determined by comparing intensities of
light before and after passing through
a SLM representing P, then quit; else
continue.

Step 2. Compute all leftmost points of
P as follows:

le ftmost_points = Threshold<,(P+ray),

because only leftmost points in the im-
age P + ray have unit intensity and
there are no points that have intensity
of less than 1.

Step 3. Compute the desired point as
follows:

lowest_le ftmost_point =

Threshold<(le ftmost_points+ray_up).
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Thus, we obtain

Lemma 3.1 A point from a non-empty point set
can be chosen optically in constant time by a sin-
gle optical processor which works in monochro-
matic mode.

Taking this result and the previous algorithm
into accpunt, we obtain

Theorem 3.2 A weak separator of two point
sets in the plane can be constructed optically in
constant time by a single optical processor which
works in monochromatic mode.

Remark: As pointed out in [ERK], the problem
of constructing a weak separator is equivalent to
finding a straight line that intersects a maximum
number of given vertical segments. Hence, the
line transversal problem can also be solved opti-
cally in constant time.

4 Constructing a Bisector
of a Finite Set of Points
and Ham-Sandwich Cuts
in Two Dimensions

A line L is called a bisector of a finite set P of
points in R2 if each open half-plane defined by L
contains at most half of the points in P.

If we pass from the original plane to the dual
plane, the set P becomes a set D(P) of dual lines
and a bisector L turns into a point D(L) lying
between the lower | X |-level and the lower [5]-
level of the arrangement A(D(P)). Hence, we can
propose the following algorithm for constructing
a bisector:

Step 1. Dualize the given point set P
into a set of dual half-planes D (P).

Step 2. Threshold D*(P) to select all
points at the | & |-level of intensity. As
a result, we obtain dual points of all
possible bisectors.

Step 3. Choose a point from the set
obtained and dualize it into a bisec-
tor (see section 3.1 for the procedure
of choosing a point from the set.)

A common bisector of two finite point sets (i.e.
a Ham-sandwich cut of the sets) is constructed in
a similar manner. First, we construct dual points
of all possible bisectors separately for the first set
and for the second set. Then we construct the
intersection of these two sets of dual points and
choose a point from the intersection. The point
choosen is the dual point of a common bisector.
Thus we obtain

Theorem 4.1 A bisector of a finite point set in
the plane, as well as a ham-sandwich cut of two
finite point sets, can be constructed optically in
constant time by a single optical processor which
works in the monochromatic mode.

5 Constructing a Center-
point of a Point Set in the
Plane

Recall that a centerpoint of a point set P =
{P;}X, in the plane is a point p such that, for
any straight line containing p, there are at least
[4] of the points of P in each closed half-plane
determined by the line.

In the dual plane, a centerpoint corresponds
to a line which lies between the upper f'—;—] —level
and the lower [ ]—level of the arrangement of
lines D(P) obtained as a result of dualization of
the point set P.

It is known that such a line always exists [E].
Moreover, we can select it in such a way that it
passes through a pair of vertices of the above lev-
els. It is also known that we are able to construct
all such lines passing through a pair of points
from a point set simultaneously in constant time
[KS93]. Hence, the only thing that remains to do
is to reject those lines which do not lie between
the upper and lower [%] ~levels.

Thus, constructing the dual line of a center-
point of a point set in the plane can be performed
optically as follows:

Step 1. Dualize points P into lines
D(P) and extract all their intersection
points IP.

Step 2. Construct the upper and lower
[41-levels of A(D(P)) (in what fol-
lows we denote them as levels) and



construct all their vertices V as follows:

V = levels N IP.

Step 3. Simultaneously construct all
straight lines L passing through each
pair of points of V.

Step 4. Fill the space between the lev-
els constructed as follows:

space = Threshold<z(levels+ray_up)Ulevels.

Step 5. Construct those segments S of
lines L which do not lie between the
above levels as follows: S = L \ space.

Step 6. Hough dualize the segments
S into the points Pgs which, in turn,
Hough dualize back into straight lines
Lycjeer supporting the segments S.

Step 7. Compute L \ Lyeject- As a re-
sult we obtain the image Lremain \
(Lremain N Lreject); where Lyemain are
those lines of L which lie completely
between the levels required.

Step 8. Using the algorithm described
in [K92, KS92] dualize the image ob-
tained into points Premain of those
lines which lie completely between the
levels required.

Obviously, the latter points are sought
for centerpoints.

double wedges, and a separator line is dualized
into a point lying in the complement of the union
of these double wedges, strictly between their up-
per and lower envelopes [ERS]. Hence, we can
propose the following optical algorithm for find-
ing the set of all possible separators:

Step 1. Dualize all points of the seg-
ments into their dual lines. As a re-
sult, the segments are dualized into the
union of double wedges (J.cs DW (e).

The upper (lower) envelope of the double
wedges is the collection of all points of the lines
bounding the double wedges, which are visible
from y = +00 (y = —o0). Hence we can pro-
ceed as follows:

Step 2. Construct the upper and lower
envelopes using the algorithm for hid-
den lines removal [K91, KS92].

Step 3. Construct the
Minkowski sums:

following

above_upper_envelope = upper_envelope+
+ray_up;
below_lower_envelope = lower_envelope+
+ray-down.

Step 4. Construct the set of dual points
of all separators as follows:
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Thus, we obtain

Theorem 5.1 A centerpoint of a point set in
the plane can be consiructed optically in constant
time by a single optical processor which works in
the monochromatic mode.

P=%%\ | DW(e)

e€S
\above_upper_envelope\below_lower_envelope.

Step 5. Choose a point from P and du-
alize it into a separator line.

6 Finding a Separator Line

for a Set of Segments

Thus, we obtain

~ Theorem 6.1 A separator line for a set of seg-

ments in the plane can be constructed optically in
constant time by a single optical processor which

A line L is called a separator for a set S of objects
in the plane if L avoids all the objects and par-
titions S into two nonempty subsets (see [ERS]).
In this section we consider the problem of con-
structing optically a separator line for a set of
segments.

In a dual setting, the problem appears to be
as follows. The given segments are dualized into

works in monochromatic mode.
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